北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (s1): 93-97.doi: 10.13190/j.jbupt.2017.s.021

• 论文 • 上一篇    下一篇

结合分类回归树和K近邻的负载均衡预测算法

朱斌, 孙斌   

  1. 北京邮电大学 信息安全中心, 北京 100876
  • 收稿日期:2016-05-29 出版日期:2017-09-28 发布日期:2017-09-28
  • 作者简介:朱斌(1992-),男,硕士生,E-mail:bupt_zhubin@163.com;孙斌(1967-),女,副教授.
  • 基金资助:
    国家242信息安全计划项目(2015A136)

A Load Balancing Predication Algorithm of CART and KNN

ZHU Bin, SUN Bin   

  1. Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2016-05-29 Online:2017-09-28 Published:2017-09-28

摘要: 提出了针对移动平台使用XMPP协议服务器端的基于分类回归树和K近邻结合的预测算法. 该方法首先通过动态反馈采集服务器节点的资源信息组成时间序列,对时间序列进行预测计算. 然后将服务器节点分区域管理,运用不同的调度策略. 实验结果证明,与原始的加权轮询和最小连接数算法相比,该预测算法在连接响应时间上减少了25%,在建立连接的平均速率上提升了近1.3倍,动态的调度策略使得服务器集群有更大的吞吐量,对于移动平台有更好的适应性.

关键词: 负载均衡, 时间序列的预测, 分类回归树, K近邻, 动态调度策略

Abstract: To address the problems in the mobile platform based on XMPP protocol, a prediction method of the server load based on classification and regression tree and K-nearest neighbor machine learning algorithm was presented. The algorithm made up time series of load by gathering every node's load information comprehensively and analyzed the time series, to carry out prediction. And then, the server nodes were divided into three regions, different scheduling strategies were used in different regions. Simulation experiments and tests showed that compared with the weight round robin and least connection algorithm, this proposed prediction algorithm decreased connection response time by 25%, and increased the connection establishment by 1.3 times. Dynamic scheduling strategy made the communication server cluster has a greater network throughput, which has more robust adaptability for mobile platform.

Key words: load balancing, forecast of time series, classification and regression tree, K-nearest neighbor, dynamic scheduling strategy

中图分类号: