北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (4): 60-67.doi: 10.13190/j.jbupt.2017.04.010

• 论文 • 上一篇    下一篇

密集网络下基于Self-Backhaul感知的用户接入负载均衡算法

唐伦, 梁荣, 陈婉, 张元宝   

  1. 重庆邮电大学 移动通信重点实验室, 重庆 400065
  • 收稿日期:2017-04-17 出版日期:2017-08-28 发布日期:2017-07-10
  • 作者简介:唐伦(1973-),男,教授,博士,E-mail:tangl@cqupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(6157073)

User Association Load Balancing Algorithm Based on Self-Backhaul Aware in Dense Networks

TANG Lun, LIANG Rong, CHEN Wan, ZHANG Yuan-bao   

  1. Key Laboratory of Mobile Communication, Chongqing University of Posts and Telecommunication, Chongqing 400065, China
  • Received:2017-04-17 Online:2017-08-28 Published:2017-07-10

摘要: 针对密集异构网络自回程场景中带宽分配不合理引起的负载不均衡问题,提出一种基于self-backhaul感知的用户接入负载均衡方案.首先根据密集异构网络下各个小基站接入与回程资源的负载状态提出一种用户接入负载均衡策略;其次利用Q-Learning算法对各个小基站带内无线接入与回程带宽分配进行学习,用户在不同带宽分配因子下,根据用户接入负载均衡策略进行重新接入,得到不同接入情况下的系统效用,进而得到最优带宽分配策略,保证负载均衡性的同时实现系统效用最大化.仿真结果表明,该方案在密集异构网络自回程场景中提高了网络负载均衡性,同时提升了用户速率体验.

关键词: 密集网络, 负载均衡, 自回程, Q学习

Abstract: In order to solve the problem of load imbalance caused by irrational bandwidth allocation in dense heterogeneous networks, a self-backhaul aware user access load balancing scheme was proposed. Firstly, a user association-load balancing strategy(UA-LBS) was described based on the load state of each small base station access and backhaul resource in dense heterogeneous network. Secondly, the Q-Learning algorithm was used to allocate wireless access and backhaul bandwidth in each small base station. For different allocation factors, it can ensure user to re-access according to the UA-LBS to get different system utility, and then to get optimal bandwidth allocation strategy to ensure load balancing while achieving system utility maximization. Simulation shows that the scheme improves the network load balancing in the self-backhaul scene of dense heterogeneous network, and improves the user rate experience.

Key words: dense network, load balance, self-backhaul, Q-learning

中图分类号: