北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (6): 76-83.doi: 10.13190/j.jbupt.2019-149

• 论文 • 上一篇    下一篇

用于文本分类的多探测任务语言模型微调

傅群超, 王枞   

  1. 1. 北京邮电大学 软件学院, 北京 100876;
    2. 北京邮电大学 可信分布式计算与服务教育部重点实验室, 北京 100876
  • 收稿日期:2019-11-22 出版日期:2019-12-28 发布日期:2019-11-15
  • 作者简介:傅群超(1992-),男,博士生,E-mail:fuqunchao@bupt.edu.cn;王枞(1958-),女,教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2017YFC1307705)

Based on Multiple Probing Tasks Fine-Tuning of Language Models for Text Classification

FU Qun-chao, WANG Cong   

  1. 1. School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Key Laboratory of Trustworthy Distributed Computing and Service(Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
  • Received:2019-11-22 Online:2019-12-28 Published:2019-11-15

摘要: 预训练语言模型被广泛运用在多项自然语言处理任务中,但是对于不同的任务没有精细的微调.针对文本分类任务,提出基于探测任务的语言模型微调方法,利用探测任务训练模型特定的语言学知识,可提高模型在文本分类任务上的性能.设计了6个探测任务,覆盖句子浅层、语法和语义三方面信息.最后在6个文本分类数据集上验证了本文的方法,使分类错误率得到改善.

关键词: 探测任务, 语言模型, 多任务学习, 文本分类

Abstract: Pre-trained language models are widely used in many natural language processing tasks, but there is no fine-tuning for different tasks. Therefore, for text classification task, the author proposes a method of fine-tuning language model based on probing task, which utilizes the specific linguistic knowledge of probing task training model, and improves the performance of the model in text classification task. Six probing tasks are given to cover the shallow information of sentences, grammar and semantics. The method is shown validated on six text classification datasets, and classification error rate is improved.

Key words: probing task, language model, multiple task, text classification

中图分类号: