北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (4): 34-40.doi: 10.13190/j.jbupt.2020-271
基于层次化类别嵌入的电力ICT系统故障分类
李建桂1, 梁越1, 高鹏飞1, 刘绍华2, 马应龙1
- 1. 华北电力大学 控制与计算机工程学院, 北京 102206;
2. 北京邮电大学 电子工程学院, 北京 100876
-
收稿日期:
2020-12-21发布日期:
2021-07-13 -
通讯作者:
马应龙(1976-),男,教授,E-mail:yinglongma@ncepu.edu.cn. E-mail:yinglongma@ncepu.edu.cn -
作者简介:
李建桂(1996-),女,硕士生. -
基金资助:
国家重点研发计划项目(2018YFC0831404;2018YFC0830605)
A Hierarchical Category Embedding Based Approach for Fault Classification of Power ICT System
LI Jian-gui1, LIANG Yue1, GAO Peng-fei1, LIU Shao-hua2, MA Ying-long1
- 1. School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2020-12-21Published:
2021-07-13
摘要: 为解决电力信息通信客服系统在故障研判时存在故障分类准确率低甚至误分的问题,提出基于层次化类别嵌入的文本分类方法,进行电力信息通信系统故障识别.首先,基于电力信息通信系统故障的用户保修工单文本数据构建电力信息通信系统层次化电力故障标签;其次,提出了基于层次化深层金字塔卷积神经网络和基于层次化中断循环神经网络2种层次化文本分类方法,采用层次化类别嵌入方法逐层进行故障类型分类.实验结果表明,基于层次化深层金字塔卷积神经网络的方法效果最优,可以提供高效、准确的故障识别服务.
中图分类号:
引用本文
李建桂, 梁越, 高鹏飞, 刘绍华, 马应龙. 基于层次化类别嵌入的电力ICT系统故障分类[J]. 北京邮电大学学报, 2021, 44(4): 34-40.
LI Jian-gui, LIANG Yue, GAO Peng-fei, LIU Shao-hua, MA Ying-long. A Hierarchical Category Embedding Based Approach for Fault Classification of Power ICT System[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(4): 34-40.
[1] 傅群超, 王枞. 用于文本分类的多探测任务语言模型微调[J]. 北京邮电大学学报, 2019, 42(6):76-83. Fu Qunchao, Wang Cong. Based on multiple probing tasks fine-tuning of language models for text classification[J]. Journal of Beijing University of Posts and Teleco-mmunications, 2019, 42(6):76-83. [2] Xi Ziyue, Chen Xiaona, Almad T, et al. A novel ensemble approach to multi-label classification for electric power fault diagnosis[C]//2019 IEEE 7th International Confe-rence on Computer Science and Network Technology (ICCSNT). Dalian:IEEE Press, 2019:267-271. [3] 汪崔洋, 江全元, 唐雅洁, 等. 基于告警信号文本挖掘的电力调度故障诊断[J]. 电力自动化设备, 2019, 39(4):126-132. Wang Cuiyang, Jiang Quanyuan, Tang Yajie, et al. Fault diagnosis of power dispatching based on alarm signal text mining[J]. Electric Power Automation Equipment, 2019, 39(4):126-132. [4] Melamud O, Goldberger J, Dagan I. Context2vec:learning generic context embedding with bidirectional LSTM[C]//Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin:Association for Computational Linguistics, 2016:51-61. [5] Peng Hao, Li Jianxin, Wang Senzhang, et al. Hierarchical taxonomy-aware and attentional graph capsule RCNNs for large-scale multi-label text classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6):2505-2519. [6] Mihalcea R, Tarau P. TextRank:bringing order into texts[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Barcelona:Association for Computational Linguistics, 2004:404-411. [7] Silla C N, Freitas A A. A survey of hierarchical classification across different application domains[J]. Data Mining and Knowledge Discovery, 2011, 22(1/2):31-72. [8] Kowsari K, Brown D E, Heidarysafa M, et al. HDLTex:hierarchical deep learning for text classification[C]//2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). Cancun:IEEE Press, 2017:364-371. [9] Liu Shaohui, Dong Mingkai, Zhang Haijun, et al. An approach of multi-hierarchy text classification[C]//2001 International Conferences on Info-Tech and Info-Net. Beijing:IEEE Press, 2001:95-100. [10] Wehrmann J, Barros R C, Dôres S N D, et al. Hierarchical multi-label classification with chained neural networks[C]//Proceedings of the Symposium on Applied Computing. Marrakech:ACM, 2017:790-795. [11] Cerri R, Barros R C, de Carvalho A C P L F, et al. A grammatical evolution algorithm for generation of hierarchical multi-label classification rules[C]//2013 IEEE Congress on Evolutionary Computation. Cancun:IEEE Press, 2013:454-461. [12] Johnson R, Zhang Tong. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Vancouver:Association for Computational Linguistics, 2017:562-570. [13] Wang Baoxin. Disconnected recurrent neural networks for text categorization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). Melbourne:Association for Computational Linguistics, 2018:2311-2320. [14] Xu Zhihui, Yang Lihong. Application of improved SMOTE algorithm in logistic regression credit scoring model[J]. Hans Journal of Data Mining, 2021, 11(2):50-58. [15] Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha:Association for Computational Linguistics, 2014:746-751. [16] Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. [17] Cai Qing. Research on Chinese naming recognition model based on BERT embedding[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). Beijing:IEEE Press, 2019:1-4. |
[1] | 宋罗娜 路子逵 邓清 张强 王小娟. 基于区块链的土地数据存储模型[J]. 北京邮电大学学报, 2023, 46(4): 27-31,39. |
[2] | 包荣珍 朱志宇 杨洋 冯春燕. 可见光通信辅助的单光源透视圆线定位算法[J]. 北京邮电大学学报, 2023, 46(4): 32-39. |
[3] | 张小乾, 王潇, 薛旭倩, 谈振, 蒲磊. 基于加权多核子空间聚类的图像分割方法[J]. 北京邮电大学学报, 2023, 46(3): 78-83. |
[4] | 王铭, 林贝贝, 张顺利. 基于帧级-时空双分支网络的步态识别方法[J]. 北京邮电大学学报, 2023, 46(3): 73-77. |
[5] | 常霄, 黄智濒, 禹旻, 杨武兵. 一种适用于航天大数据的深度决策树算法[J]. 北京邮电大学学报, 2023, 46(3): 1-6. |
[6] | 张泽维 李陶深 许钧智. 面向多用户的SWIPT-MEC任务分级处理卸载机制[J]. 北京邮电大学学报, 0, (): 0-0. |
[7] | 李超然 谢磊. 基于振动感知的按键识别技术[J]. 北京邮电大学学报, 0, (): 0-0. |
[8] | 杨树杰 方楚星 郝昊 蒋可. 一种基于DQN的全景视频边缘缓存优化方案[J]. 北京邮电大学学报, 0, (): 0-0. |
[9] | 叶洪滨 林政宽 程红举. 基于多相机特征融合的行人检测算法研究[J]. 北京邮电大学学报, 0, (): 0-0. |
[10] | 翟夏普 安源 龙艺璇. 本体和深度学习融合的在线评论细粒度情感分析[J]. 北京邮电大学学报, 0, (): 0-0. |
[11] | 宫岐伟 禹可 吴晓非. PERC Roberta:基于ERC Roberta的提示学习实现对话情感识别[J]. 北京邮电大学学报, 0, (): 0-0. |
[12] | 孙国玮 许方敏 朱瑾瑜 张恒升 赵成林. 算力网络中的确定性调度与路由联合智能优化方案[J]. 北京邮电大学学报, 2023, 46(2): 9-14. |
[13] | 黄韬 谈沙 唐琴琴 谢人超 张然. 面向分布式云的广域超融合网络:愿景与关键技术[J]. 北京邮电大学学报, 2023, 46(2): 1-8. |
[14] | 谢人超 杨煜天 唐琴琴 陈清霞 向雪霜. 低轨卫星网络星载边缘DNN推理策略研究[J]. 北京邮电大学学报, 2023, 46(2): 57-63. |
[15] | 杨宸旭 陈尧 李秋锋 石文泽 董德秀. 基于相位迁移的超声相控阵聚焦扫查成像方法[J]. 北京邮电大学学报, 2023, 46(2): 98-103. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||