北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (4): 76-81.doi: 10.13190/j.jbupt.2018-299

• 论文 • 上一篇    下一篇

联合分类与匹配的FAQ问答模型

莫歧, 王小捷   

  1. 北京邮电大学 智能科学与技术中心, 北京 100876
  • 收稿日期:2018-11-28 发布日期:2008-06-15
  • 通讯作者: 王小捷(1969-),男,教授,博士生导师,E-mail:xjwang@bupt.edu.cn. E-mail:xjwang@bupt.edu.cn
  • 作者简介:莫歧(1994-),男,硕士生.

Combining Text Classification and Text Matching for FAQ-Based Question Answering

MO Qi, WANG Xiao-jie   

  1. Center for Intelligence of Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2018-11-28 Published:2008-06-15

摘要: 文本分类或文本匹配是解决基于常见问题和解答(FAQ)问答的2个途径.单独使用分类方法不能有效利用标准问题本身的信息,而单独使用匹配方法时,负样本的选择很困难,为此,提出一类将文本分类和文本匹配方法相结合的模型,不仅能选择真正需要区分的负例,并且能够有效利用标准问题的信息.实验结果表明,提出的模型在多个FAQ问答数据上能达到最好性能.

关键词: 问答模型, 文本分类, 文本匹配

Abstract: Text classification and text matching are two ways to solve the frequently asked questions (FAQ)-based question answering. However, using the text classification method alone cannot effectively utilize the information of the standard question itself. When the text matching method is used alone, the selection of the negative sample is a very difficult problem. A series of models that combine text classification and text matching methods are proposed, which not only can select negative examples that really need to be distinguished, but also can effectively use the information of standard questions. Experiments show that the proposed models achieve the best performance on multiple FAQ-based question answering data.

Key words: question answering, text classification, text matching

中图分类号: