北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (3): 47-52.doi: 10.13190/j.jbupt.2020-187

• 论文 • 上一篇    下一篇

一种利用多任务学习的短期住宅负荷预测方案

王玉峰1, 肖灿彬1, 陈焱2, 金群3   

  1. 1. 南京邮电大学 通信与信息工程学院, 南京 210003;
    2. 国家能源集团江苏电力有限公司, 南京 210014;
    3. 早稻田大学 人间科学部, 埼玉 359-1192
  • 收稿日期:2020-10-05 出版日期:2021-06-28 发布日期:2021-06-23
  • 通讯作者: 王玉峰(1974-),男,教授,E-mail:wfwang@njupt.edu.cn. E-mail:wfwang@njupt.edu.cn
  • 作者简介:肖灿彬(1997-),男,硕士生.
  • 基金资助:
    国家自然科学基金项目(61801240);江苏省教育厅中青年学术带头人项目(QL00219001)

An Short-Term Residential Load Forecasting Scheme Using Multi-Task Learning

WANG Yu-feng1, XIAO Can-bin1, CHEN Yan2, JIN Qun3   

  1. 1. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
    2. State Energy Group Jiangsu Electric Power Company Limited, Nanjing 210004, China;
    3. Faculty of Human Sciences, Waseda University, Saitama 359-1192, Japan
  • Received:2020-10-05 Online:2021-06-28 Published:2021-06-23

摘要: 作为信息物理社会系统的一种具体形式,智能电网中的负荷预测,尤其是单个电力客户的短期负荷预测,在智能电力系统的规划和运营中将扮演越来越重要的角色.考虑到同一住宅小区用户之间的负荷行为的相似性,受多任务学习的启发,提出了一种基于多任务学习的有效住宅负荷预测方案.首先,利用K-means聚类技术和皮尔逊相关系数挑选出2个相似用户,进而将2个用户的负荷数据合并输入,并将双向长短时记忆网络作为共享层全面捕获2个用户数据之间的关系,然后送入2个全连接的任务相关的输出层.在真实的数据集上,将所提方案与几种典型的负荷预测方案进行全面比较.实验结果表明,与已有的深度学习预测方案相比,提出的多任务负荷预测方案提高了预测准确程度.

关键词: 负荷预测, 多任务学习, 双向长短期记忆, 信息物理社会系统, 智能电网

Abstract: In smart grid regarded as specific embodying of cyber-physical-social system, load forecasting, especially short-term load forecasting for individual electric customers plays an increasingly role in planning and operation of smart power system. Considering the similarity of electricity consumption between users, inspired by multi-task learning, the article puts forward an effective residential load forecasting based on multi-task learning model. In detail, the K-means clustering technology and Pearson correlation coefficient are used to select two similar users. Then these two user's load data are merged as input, the bidirectional long short-term memory network is used as a sharing layer to fully capture the relationship between the data of the two users, and then two fully-connection task-specific output layers are respectively built. Based on real datasets, the proposed scheme is thoroughly compared with several typical deep learning based load forecasting schemes. Experiments show that proposed multi-task learning scheme improves the prediction accuracy compared with the existing deep learning prediction scheme.

Key words: load forecasting, multi-task learning, bidirectional long short-term memory, cyber-physical-social system, smart grid

中图分类号: