[1] Prasad M C, Florence L, Arya A. A study on software metrics based software defect prediction using data mining and machine learning techniques[J]. International Journal of Database Theory and Application, 2015, 8(3):179-190.
[2] Scandariato R, Walden J, Hovsepyan A, et al. Predicting vulnerable software components via text mining[J]. IEEE Transactions on Software Engineering, 2014, 40(10):993-1006.
[3] Wang S, Liu T, Tan L. Automatically learning semantic features for defect prediction[C]//Proceedings of the 38th International Conference on Software Engineering. Austin:ACM, 2016:297-308.
[4] Nguyen V H, Le M S T. Predicting vulnerable software components with dependency graphs[C]//International Workshop on Security Measurements and Metrics.[S.l.]:ACM, 2010:3.
[5] Malhotra R. An empirical framework for defect prediction using machine learning techniques with Android software[J]. Applied Soft Computing, 2016, 40(10):993-1006.
[6] Liu H, Motoda H. Feature selection for knowledge discovery and data mining[M].[S.l.]:Kluwer Academic Publishers, 1998:1-10.
[7] Lessmann S, Baesens B, Mues C. Benchmarking classification models for software defect prediction:a proposed framework and novel findings[J]. IEEE Transactions on Software Engineering, 2008, 34(4):485-496.
[8] Giger E, D'Ambros M, Pinzger M, et al. Method-level bug prediction[C]//Acm-IEEE International Symposium on Empirical Software Engineering and Measurement.[S. l.]:IEEE, 2013:171-180.
[9] 陈翔, 顾庆, 刘望舒, 等. 静态软件缺陷预测方法研究[J]. 软件学报, 2016, 27(1):1-25. Chen Xiang, Gu Qing, Liu Wangshu, et al. Survey of static software defect prediction[J]. Ruan Jian Xue Bao/Journal of Software, 2016, 27(1):1-25.
[10] Zhang F, Zheng Q, Zou Y, et al. Cross-project defect prediction using a connectivity-based unsupervised classifier[C]//Proceedings of the 38th International Conference on Software Engineering. Austin:ACM, 2016:309-320.
[11] Perl H, Dechand S, Smith M. VCCFinder:finding potential vulnerabilities in open-source projects to assist code audits[C]//ACM Sigsac Conference on Computer and Communications Security (CCS'15). Denver:ACM, 2015:426-437.
[12] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[13] Jerome Q, Allix K, State R. Using opcode-sequences to detect malicious Android applications[C]//IEEE International Conference on Communications.[S.l.]:IEEE, 2014:914-919.
[14] Mclaughlin N, Jesus M D R, Kang B J, et al. Deep android malware detection[C]//ACM on Conference on Data and Application Security and Privacy.[S.l.]:ACM, 2017:301-308.
[15] Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends® in Machine Learning, 2009, 2(1):1-127.
[16] Dong F. DefectDroid[EB/OL]. (2017-10-01)[2017-11-05]. https://github.com/breezedong/DefectDroid.git
[17] Tantithamthavorn C, Mcintosh S, Hassan A E. Automated parameter optimization of classification techniques for defect prediction models[C]//International Conference on Software Engineering (ICSE'16). Austin:ACM, 2016:321-332.
[18] 杨朝红, 宫云战, 肖庆, 等. 基于软件缺陷模型的测试系统[J]. 北京邮电大学学报, 2008, 31(5):1-4. Yang Zhaohong, Gong Yunzhan, Xiao Qing, et al. A defect model based testing system[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(5):1-4. |