北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (5): 64-70.doi: 10.13190/j.jbupt.2019-255

• 论文 • 上一篇    下一篇

一种利用随机森林方法检测睡眠呼吸暂停的研究

吕兴凤1, 李金宝2   

  1. 1. 黑龙江大学 计算机科学技术学院, 哈尔滨 150080;
    2. 齐鲁工业大学(山东省科学院) 山东省人工智能研究院, 济南 250353
  • 收稿日期:2019-12-12 发布日期:2021-03-11
  • 通讯作者: 李金宝(1969-),男,教授,博士生导师,E-mail:lijinb@sdas.org. E-mail:lijinb@sdas.org
  • 作者简介:吕兴凤(1980-),女,副教授.
  • 基金资助:
    国家自然科学基金项目(61370222);黑龙江省自然科学基金重点项目(ZD2019F003);黑龙江省属高等学校基本科研业务费基础研究项目(KJCX201815,KJCX201917)

A Method of Detecting Sleep Apnea Using Random Forest

Lü Xing-feng1, LI Jin-bao2   

  1. 1. School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China;
    2. Qilu University of Technology(Shandong Academy of Sciences), Shandong Artificial Intelligence Institute, Jinan 250353, China
  • Received:2019-12-12 Published:2021-03-11

摘要: 多导睡眠仪中的多种呼吸信号使睡眠呼吸暂停检测过程变得复杂,影响患者睡眠,对此,提出一种利用随机森林方法进行自动睡眠呼吸暂停检测的方法.腹部呼吸信号经过希尔伯特-黄变换后,呼吸暂停与正常睡眠时的能量和边际谱分布显著不同,通过提取相关频域特征,结合时域特征,利用机器学习中的随机森林方法进行呼吸暂停的检测,有效地降低了检测复杂性,提高了检测准确性.实验结果表明,此方法在检测的便捷性和准确性上优于已有方法,更适用于家庭环境,具有广泛的应用前景.

关键词: 机器学习, 睡眠呼吸暂停, 希尔伯特-黄变换, 随机森林

Abstract: To solve the problem that various respiratory signals in polysomnography make the detection of sleep apnea complicated and affect patients' sleep, a method of automatic sleep apnea detection using random forest is proposed. The energy and marginal spectrum distribution of sleep apnea is significantly different from that of normal sleep after Hilbert-Huang transform. By extracting the relevant frequency domain features, combining with the time domain features, the random forest method in machine learning method is used to detect sleep apnea, which effectively reduces the detection complexity and improve the accuracy. Experiments show that this method is more convenient and accurate than the existing method, more suitable for home environment,and has a wide range of application prospects.

Key words: machine learning, sleep apnea, Hilbert-Huang transform, random forest

中图分类号: