[1] Jiang Y, Moseson S, Saxena A. Efficient grasping from RGBD images:learning using a new rectangle representation[C]//IEEE International Conference on Robotics and Automation. Shanghai:[s.n.], 2011:9-13.
[2] Lenz I, Lee H, Saxena A. Deep learning for detecting robotic grasps[J]. The International Journal of Robotics Research, 2015, 34(4-5):705-724.
[3] Girshick R. Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.[S.l.]:ICCV Press, 2015:10-15.
[4] Ren S, He K, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of Conference on Neural Information Processing Systems.[S.l.]:NIPS Press, 2015:1-15.
[5] Redmon J, Divvala S, Girshick R, et al. You only look once:unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE, 2016:779-788.
[6] Lecun Y, Bengio Y, Hinton G. Deep learning.[J]. Nature, 2015, 521(7553):436-444.
[7] Hossain D, Capi G, Jindai M. Evolution of deep belief neural network parameters for robot object recognition and grasping[J]. Procedia Computer Science, 2017(105):153-158.
[8] Wang Z, Li Z, Wang B, et al. Robot grasp detection using multimodal deep convolutional neural networks[J]. Advances in Mechanical Engineering, 2016(8):1-12.
[9] Viereck U, Pas A T, Saenko K, et al. Learning a visuomotor controller for real world robotic grasping using simulated depth images[J]. 1st Conference on Robot Learning, 2017(78):291-300.
[10] 杜学丹, 蔡莹皓, 鲁涛, 等. 一种基于深度学习的机器人拣选方法[J]. 机器人, 2017, 39(6):820-828, 837. Du Xuedan, Cai Yinghao, Lu Tao, et al. A robotic grasping method based on deep learning[J]. Robot, 2017, 39(6):820-828, 837. |