北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (1): 90-93.doi: 10.13190/j.jbupt.2014.01.020

• 研究报告 • 上一篇    下一篇

基于神经网络的电力通信网风险评估方法

亓峰1, 李琪1, 韩骞1, 杜益2, 邱雪松1   

  1. 1. 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876;
    2. 中国电子系统工程总公司, 北京 100840
  • 收稿日期:2013-04-07 出版日期:2014-02-28 发布日期:2014-01-07
  • 作者简介:亓摇峰(1971—),男,教授;李摇琪(1989—),女,硕士生,E-mail:yukiliqi@bupt.edu.cn.
  • 基金资助:

    国家高技术研究发展计划项目(2012AA050801)

A Neural Network Based Method to Assess Electric Power Communication Network Risk

QI Feng1, LI Qi1, HAN Qian1, DU Yi2, QIU Xue-song1   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. China Electronic Systems Engineering Corporation, Beijing 100840, China
  • Received:2013-04-07 Online:2014-02-28 Published:2014-01-07

摘要:

提出了一种基于神经网络的电力通信网风险评估算法——基于二分法的学习速率自适应BP(back propagation)神经网络算法. 该算法在网络训练过程中使用二分法调整学习速率,使得学习速率在训练过程中不断向最优化方向自动调整. 仿真结果表明,收敛速度、误差精度和训练时间等算法性能得到了优化.

关键词: BP神经网络, 学习速率, 二分法, 电力通信网, 风险评估

Abstract:

An improved back propagation neural network algorithm based on dichotomy was proposed for assessment of electric power communication network risk. The dichotomy was used to adjust the learning rate in the training process. It helps to change the learning rate automatically to the direction of optimization. Simulation shows that the improved algorithm's performance is optimized, such as convergence rate、error accuracy and training time.

Key words: back propagation neural network, learning rate, dichotomy, electric power communication network, assessment of risk

中图分类号: