北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (1): 124-130.doi: 10.13190/j.jbupt.2020-118

• 研究报告 • 上一篇    

损伤声发射信号小波包神经网络特征识别方法

齐添添1, 陈尧1, 何才厚1,2, 龙盛蓉1, 李秋锋1   

  1. 1. 无损检测技术教育部重点实验室 南昌航空大学, 南昌 330063;
    2. 江西省特种设备检验检测研究院鹰潭分院, 鹰潭 335000
  • 收稿日期:2020-08-14 出版日期:2021-02-28 发布日期:2021-09-30
  • 通讯作者: 李秋锋(1976-),男,教授,E-mail:qiufenglee@163.com. E-mail:qiufenglee@163.com
  • 作者简介:齐添添(1995-),女,硕士生.
  • 基金资助:
    国家自然科学基金项目(11764030,51705232);江西省自然科学基金项目(20192BAB216026);江西省质监局科技计划项目(GZJKE201810)

A Wavelet Packet Neural Network Feature Recognition Method for Damage Acoustic Emission Signals

QI Tian-tian1, CHEN Yao1, HE Cai-hou1,2, LONG Sheng-rong1, LI Qiu-feng1   

  1. 1. Key Laboratory of Nondestructive Testing, Nanchang Hangkong University, Nanchang 330063, China;
    2. Yingtan Branch of Special Equipment Inspection and Research Institute of Jiangxi, Yingtan 335000, China
  • Received:2020-08-14 Online:2021-02-28 Published:2021-09-30

摘要: 在材料损伤的检测和评价时,为了在大量接收信号中识别有效声发射信号,提出了一种基于小波包特征提取的损伤声信号神经网络识别方法,首先利用小波包全局分解的优势,准确提取非平稳信号的特征信息,建立相应特征向量,对有效声发射信号和干扰噪声信号进行表征;然后根据特征向量和识别输出要求,建立了3层结构的反向传播神经网络对信号进行分析和识别,滤除噪声信号,保留有效声发射信号;最后,在玻璃钢复合材料的声发射实验中,采集了400组信号对该方法进行验证,准确性达到97.5%,能够满足工程需要.

关键词: 声发射检测, 小波包分解, 特征向量, BP神经网络, 信号识别

Abstract: In the testing and evaluation of material damage, in order to identify effective acoustic emission (AE) signals among a large number of received signals, a neural network recognition method based on wavelet packet feature extraction is proposed. Firstly,the advantage of wavelet packet global decomposition is used to accurately extract the feature information from non-stationary signals,so, the corresponding feature vectors are established to characterize effective AE signals and interfering noise signals. Then,according to feature vectors and recognition output requirements,a three-layer back propagation neural network is established to analyze and identify signals,which could filter out noise signals and retain effective AE signals. Finally,400 sets of AE signals are collected in the experiment of glass fiber reinforced plastics to verify the method. The collected AE signals are identified with an accuracy of 97.5%,which can meet requirements of engineering.

Key words: acoustic emission testing, wavelet packet decomposition, feature vector, back propagation neural network, signal recognition

中图分类号: