摘要: 针对现有谣言检测方法在微调大语言模型时导致的高内存占用,以及提示学习方法对初始点选择敏感的问题,提出一种基于元多任务提示学习的零样本谣言检测方法。首先,基于提示学习范式调整零样本谣言检测任务目标,通过设计提示模板使这一任务目标与大语言模型的训练任务目标保持一致,以充分利用大语言模型积累的先验知识。其次,利用元学习的参数更新策略以定位适用于零样本谣言检测任务的提示模板初始点,从不同的元任务中学习通用知识来实现参数优化。最后,引入情感分析作为辅助元任务进一步调整和优化模型参数。在多个公开数据集上的对比实验结果表明,所提方法在零样本谣言检测任务中表现出色,其性能指标优于基准方法。
中图分类号: