北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2023, Vol. 46 ›› Issue (2): 43-49.

• 算力网络与分布式云 • 上一篇    下一篇

面向高移动性车联网场景的预测卸载决策算法

彭维平,王戈,宋成,阎俊豪   

  1. 河南理工大学
  • 收稿日期:2022-03-09 修回日期:2022-06-30 出版日期:2023-04-28 发布日期:2023-05-14
  • 通讯作者: 彭维平 E-mail:pwp9999@hpu.edu.cn
  • 基金资助:
    河南省高校青年骨干教师计划资助项目;国家重点研发计划基金资助项目

Predictive Offloading Decision Algorithm for High Mobility Vehicular Network Scenarios

  • Received:2022-03-09 Revised:2022-06-30 Online:2023-04-28 Published:2023-05-14
  • Contact: Wei-Ping PENG E-mail:pwp9999@hpu.edu.cn
  • Supported by:
    The Foundation of the Young Key Teachers Program in Henan Universities;The National Key Research and Development Program of China

摘要: 针对车联网场景下高移动性车辆在不同的边缘服务器间频繁切换导致任务卸载失败率高的问题,提出了一种新的预测卸载决策算法。首先,构建本地、边缘服务器和云服务器计算模型,基于计算任务量大小、最大容忍时延、服务器资源等约束条件,预判定任务卸载方式;其次,针对边缘服务器卸载方式,利用长短期记忆网络构建车辆位置预测模型,生成可用于卸载的边缘服务器集合;最后,采用改进的蚁群算法实现在多边缘服务器间卸载任务最优分配。仿真结果表明,所提算法提高了任务完成率和资源利用率。

关键词: 车联网, 边缘计算卸载, 位置预测, 长短期记忆网络, 蚁群算法

Abstract: Aiming at the problem of high failure rate of task offloading caused by frequent switching between different edge servers of highly mobile vehicles in the scenario of Internet of vehicles, a novel predictive offloading decision algorithm was proposed. Firstly, the local server,edge server and cloud server computing models were constructed, and the offloading mode of tasks was predetermined based on the constraints of the size of computing tasks, maximum latency tolerance and server resources. Secondly, aiming at the offloading mode of edge servers, a vehicle location prediction model was constructed by using long short-term memory network to generate edge servers that could be used for offloading. Finally, the improved ant colony algorithm is used to realize the optimal offloading task allocation among multi-edge servers. Simulation results show that the proposed algorithm improves task completion rate and resource utilization rate.

Key words: vehicular networks, edge computing offloading, location prediction, long short term memory, ant colony optimization

中图分类号: