[1] Fu Zhangjie, Sun Xingming, Shu Jiangang, et al. New forensic methods for ooxml format documents[J]. Lecture Notes in Computer Science, 2014(8389):503-513.
[2] Yajam H, Mousavi A. A new linguistic steganography scheme based on lexical substitution[C]//International Isc Conference on Information Security and Cryptology. Tehran:IEEE Press, 2014:155-160.
[3] Cao Qi, Sun Xingming, Xiang Lingyun. A secure text steganography based on synonym substitution[C]//IEEE Conference Anthology. China:IEEE Press, 2013:1-3.
[4] Topkara M, Topkara U, Atallah M J. Information hiding through errors:a confusing approach[J]. SPIE Procee-dings, 2007(6505):1-12.
[5] 戴祖旭, 洪帆, 崔国华. 基于词性标记串统计特性的文本数字水印算法[J]. 通信学报, 2007, 28(4):108-113. Dai Zuxu, Hong Fan, Cui Guohua. Watermarking text document based on statistic property of part of speech string[J]. Journal on Communications, 2007, 28(4):108-113.
[6] Jin C, Zhang D, Pan M. Chinese text information hiding based on paraphrasing technology[C]//International Conference of Information Science and Management Engineering. China:IEEE Press, 2010:39-42.
[7] Grothoff C, Grothoff K, Stutsman R. Translation-based steganography[J]. Journal of Computer Security, 2009, 17(3):269-303.
[8] Mckellar D. Spammimic[EB/OL]. 2017. http://www.spammimic.com.
[9] Chapman M, Davida G. Nicetext[EB/OL]. 2017. http://www.securityfocus.com/tools/1183.
[10] He J, Zhou M. Generating Chinese metrical poetry by a statistical MT approach[J]. Journal of Chinese Information Processing, 2010, 24(2):96-103.
[11] Luo Yubo, Huang Yongfeng, Chang Chinchen, et al. Text steganography based on ci-poetry generation using markov chain model[J]. KSⅡ Transactions on Internet and Information Systems, 2016, 10(9):4568-4584.
[12] Kyunghyun C, Dzmitry B, Fethi B, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Conference on Empirical Methods in Natural Language Processing(EMNLP). Qatar:Association for Computational Linguistics, 2014:1724-1734.
[13] Sermanet P, Eigen D, LeCun Y, et al. Overfeat:integrated recognition, localization and detection using convolutional networks[C]//International Conference on Learning Representations. Banff:arXiv preprint, 2013:1312, 6229.
[14] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[15] Oriol V, Alexander T, Samy B, et al. Show and tell:a neural image caption generator[C]//Computer Vision and Pattern Recognition. Boston:IEEE press, 2015:3156-3164.
[16] Kelvin X, Jimmy L B, Ryan K, et al. Show, attend and tell:neural image caption generation with visual attention[C]//Proceeding of the 32nd International Conference on Machine Learning. France:ACM press, 2015:2048-2057.
[17] Wu Q, Shen C S H, Liu L Q, et al. What value do explicit high level concepts have in vision to language problems[C]//Computer Vision and Pattern Recognition. Lasa Vegas:IEEE press, 2016:203-212.
[18] Andrei K, Li F F. Deep visual-semantic alignments for generating image descriptions[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):664-676.
[19] Rashtchian C, Young P, Hodosh M, et al. Collecting image annotations using amazon's mechanical turk[C]//In NAACL HLT Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk. California:ACM press, 2010:139-147.
[20] Kishore P, Salim R, Todd W, et al. Bleu:a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia:ACM press, 2002:311-318. |