北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (6): 119-125.

• 论文 • 上一篇    下一篇

一种低信噪比下基于深度学习的DoA估计方法

余佳润1,王亚峰2   

  1. 1. 北京邮电大学信息与通信工程学院泛网无线通信实验室
    2. 北京邮电大学 信息与通信工程学院
  • 收稿日期:2022-06-22 修回日期:2022-10-07 出版日期:2022-12-28 发布日期:2022-11-24
  • 通讯作者: 王亚峰 E-mail:wangyf@bupt.edu.cn
  • 基金资助:
    北京邮电大学-中国移动研究院联合创新中心

A Deep Learning-Based DoA Estimation Method in Low SNR

run jiayu1, 2   

  1. 1. Key Laboratory of Universal Wireless Communications, Institute of Information and communication,Beijing University of Posts and Telecommunications,
    2.
  • Received:2022-06-22 Revised:2022-10-07 Online:2022-12-28 Published:2022-11-24

摘要: 针对低信噪比下毫米波系统多径方位估计问题,提出了一种基于深度学习的多径波达方向估计方法。该方法通过构建协方差矩阵与多径角度间的映射模型来实现:首先利用接收信号,构建抽样协方差矩阵;然后,通过基于深度残差收缩网络的多标签分类模型,实现视距传输路径角度估计;最后,利用基于卷积神经网络的回归模型,实现非视距传输路径的角度估计。仿真结果表明,与传统方法相比,所提方法能够显著降低均方根误差,并且在低信噪比下可以取得较低的角度估计误差;在不同场景下,所提方法具有良好的适用性。

关键词: 毫米波, 多径方位估计, 深度残差收缩网络, 卷积神经网络

Abstract: Aiming at the problem of millimeter-wave multipath direction-of-angle estimation, a deep learning-based direction-of-angle estimation method is proposed. This method is realized by constructing the mapping between the covariance matrix and multipath direction-of-angle. The proposed method first constructs a sampling covariance matrix based on the received signal. Then, a multi-label classification model using the deep residual shrinkage network is introduced into the direction-of-angle estimation of the line-of-sight path. Finally, a regression model using the proposed convolutional neural network is used to achieve direction-of-angle estimation of multiple non-line-of-sight paths. A series of simulation results show that the proposed method significantly reduces root mean square error compared with the traditional methods. The lower angle estimation error is achieved in low signal-to-noise ratio. Moreover, under different scenarios, the proposed approach has the good applicability.

Key words: mmWave, multipath direction estimation, deep residual shrinkage network, convolutional neural network

中图分类号: