北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (4): 1-6.doi: 10.13190/j.jbupt.2021-185

• 智慧医疗 •    下一篇

面向主动脉缩窄辅助诊断的神经网络模型设计

武兴坤1, 罗涛1, 刘爱军2, 杨明2, 张文静1   

  1. 1. 北京邮电大学 北京先进信息网络实验室, 北京 100876;
    2. 首都医科大学附属北京安贞医院 小儿心脏中心, 北京 100029
  • 收稿日期:2021-09-01 出版日期:2022-08-28 发布日期:2022-09-03
  • 通讯作者: 罗涛(1971—),男,教授,博士生导师,邮箱:tluo@bupt.edu.cn。 E-mail:tluo@bupt.edu.cn
  • 作者简介:武兴坤(1997—),男,硕士生。

Design of Neural Network Model for Auxiliary Diagnosis of Coarctation of Aorta

WU Xingkun1, LUO Tao1, LIU Aijun2, YANG Ming2, ZHANG Wenjing1   

  1. 1. Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Pediatric Heart Center, Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing 100029, China
  • Received:2021-09-01 Online:2022-08-28 Published:2022-09-03

摘要: 为了辅助临床医生更快、更准确地进行主动脉缩窄的术前评估,结合心脏计算机断层扫描图像的三维空间特征,提出一种基于三维卷积神经网络的主动脉缩窄辅助诊断模型。相比于传统主动脉缩窄辅助诊断方法,使用这种新模型可在提高诊断结果可靠性的同时,直接面向图像操作,无需进行繁杂的数据预处理,诊断准确率、查准率和查全率均有显著提高。

关键词: 主动脉缩窄, 三维卷积神经网络, 三维空间特征, 心脏CT图像

Abstract: A model of coarctation of aorta based on three-dimensional aided diagnosis model of aortic coarctation based on three-dimensional convolution neural network is proposed, which combines the three-dimensional spatial features of cardiac computed tomography images. Compared with the traditional auxiliary diagnosis method of aortic coarctation, the proposed method not only improves the reliability of diagnosis results, but also directly processes images operation without complicated data preprocessing process. The performance in terms of diagnosis accuracy, precision and recall has been significantly improved.

Key words: coarctation of aorta, three-dimensional convolutional neural network, three-dimensional spatial features, cardiac computed tomography image

中图分类号: