[1] 陈志全, 杨骏, 乔树山. 基于EEMD的异常声音特征提取[J]. 计算机与数字工程, 2016, 44(10):1875-1879. Chen Zhiquan, Yang Jun, Qiao Shushan. Abnormal sound feature extraction based on EEMD[J]. Computer and Digital Engineering, 2016, 44(10):1875-1879. [2] Xu Jining, Yao Xiaoxin. Abnormal sound recognition with audio feature combination and modified GMM[C]//Proceedings of the 32nd Chinese Control Conference. Xi'an:IEEE Press, 2013:4582-4585. [3] Pedroza Ramirez A D, De La Rosa Vargas J I, Valdez R R, et al. A comparative between Mel frequency cepstral coefficients and inverse Mel frequency cepstral coefficients features for an automatic bird species recognition system[C]//2018 IEEE Latin American Conference on Computational Intelligence. Gudalajara:IEEE Press, 2018. [4] 李颀, 白雨尼, 王丹聪. 基于小波包分析的玻璃破碎声音识别系统设计[J]. 计算机测量与控制, 2018, 26(1):168-172. Li Qi, Bai Yuni, Wang Dancong. Design of class breaking sound recognition system based on wavelet packet transform[J]. Computer Measurement and Control, 2018, 26(1):168-172. [5] Yan Guolin, Wang Mei, Liu X, et al. Sound event recognition based in feature combination with low SNR[C]//2019 International Conference on Artificial Intelligence and Advanced Manufcturing. Dublin:IEEE Press, 2019:109-114. [6] 韦娟, 张芃楠, 岳凤丽, 等. 基于PSO-PF算法的SVM识别方法及其在异常声音中的应用[J]. 北京邮电大学学报, 2019, 42(3):58-63. Wei Juan, Zhang Pengnan, Yue Fengli, et al. Recognition and application of abnormal sound via SVM based on PSO-PF[J]. Journal of Beijing University of Posts and Telecommunications, 2019, 42(3):58-63. [7] Zhang Shangyue, Liu Yuanyuan, Yang Gongliu. EMD interval thresholding denoising based on correlation coefficient to select relevant modes[C]//2015 34th Chinese Control Conference. Hangzhou:IEEE Press, 2015:4801-4806. [8] 杨恭勇, 周小龙, 李家飞, 等. 局部Hilbert边际能量谱在滚动轴承故障诊断中的应用[J]. 东北电力大学学报, 2017, 37(2):77-81. Yang Gongyong, Zhou Xiaolong, Li Jiafei, et al. A study of rolling bearing fault diagnosis based on local Hilbert marginal energy spectrum[J]. Journal of Northeast Electric Power University, 2017, 37(2):77-81. [9] Winursito A, Hidayat R, Beji A, et al. Improvement of MFCC feature extraction accuracy using PCA in indonesian speech recognition[C]//2018 International Conference on Information and Communications Technology. Yogyakarta:IEEE Press, 2018:379-383. [10] Chakroborty S, Roy A, Majumdar S, et al. Capturing complementary information via reversed filter bank and parallel implementation with MFCC for improved text-independent speaker identification[C]//2007 International Conference on Computing:Theory and Applications. Kolkata:IEEE Press, 2007. [11] Gupta H, Gupta D. LPC and LPCC method of feature extraction in speech recognition system[C]//2016 6th International Conference Cloud System and Big Data Engineering. Noida:IEEE Press, 2016:498-502. [12] Eltiraifi O, Elbasheer E, Nawari M. A comparative study of MFCC and LPCC features for speech activity detection using deep belief network[C]//2018 International Conference on Computer Control, Electrical and Electronics Engineering. Khartoum:IEEE Press, 2018. [13] Liu Gang, He Wei, Jin Bicheng. Feature fusion of speech emotion recognition based on deep learning[C]//2018 International Conference on Network Infrastructure and Digital Content. Guiyang:IEEE Press, 2018:193-197. [14] Nikhitha M, Roopa Sir S, Uma Maheswari B, et al. Fruit recognition and grade of disease detection using inception V3 model[C]//2019 3rd International Conference on Electronics, Communication and Aerospace Technology. Coimbatore:IEEE Press, 2019:1040-1043. |