北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (5): 118-124.doi: 10.13190/j.jbupt.2020-034

• 研究报告 • 上一篇    下一篇

基于深度学习的类SM4算法S盒逆向分析

马向亮1,2, 李冰3, 杨丹3, 黄克振1,2, 段晓毅4   

  1. 1. 中国科学院软件研究所 可信计算与信息保障实验室, 北京 100190;
    2. 中国科学院大学, 北京 100049;
    3. 国家信息技术安全研究中心, 北京 100084;
    4. 北京电子科技学院 电子信息工程系, 北京 100070
  • 收稿日期:2020-03-31 发布日期:2021-03-11
  • 通讯作者: 段晓毅(1979-),男,讲师,硕士生导师,E-mail:duanxiaoyi@besti.edu.cn. E-mail:duanxiaoyi@besti.edu.cn
  • 作者简介:马向亮(1986-),男,博士生.
  • 基金资助:
    国家重点研发计划项目(2018YFB0904900,2018YFB0904901);"十三五"装备预研领域基金项目(6140002020115)

Reverse-Analysis of S-Box for SM4-Like Algorithms Based on Side Channel Technology

MA Xiang-liang1,2, LI Bing3, YANG Dan3, HUANG Ke-zhen1,2, DUAN Xiao-yi4   

  1. 1. Trusted Computing and Information Assurance Laboratory, Institute of Software of Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. National Research Center for Information Technology Security, Beijing 100084, China;
    4. Department of Electronics and Information Engineering, Beijing Electronic Science and Technology Institute, Beijing 100070, China
  • Received:2020-03-31 Published:2021-03-11

摘要: 在建模类攻击场景下,基于多元高斯分布的模板攻击是常用的侧信道逆向分析方法.在同样的场景下,分析了深度学习方法在逆向分析领域的应用,提出了基于深度学习的S盒逆向分析算法.通过选取适用于侧信道逆向分析的深度学习算法、损失函数和标签设计,对类SM4算法进行了S盒逆向恢复实验.实验结果表明,使用深度学习进行S盒逆向分析是可行的,且在一定的条件下优于模板攻击;另外,多层感知机算法预测的结果要优于卷积神经网络算法预测的结果.

关键词: 深度学习, 逆向分析, S盒, 类SM4算法

Abstract: In the profiled scenario, the common method of reverse analysis is the template attack based on multi-Gaussian distribution. The article applies the concept of deep learning to the field of reverse analysis for the first time under the same conditions, and proposes an S-box reverse analysis algorithm based on deep learning. By selecting the deep learning algorithm, loss function and label design method suitable for side channel reverse analysis, an S-box reverse recovery experiment is conducted for SM4-like algorithm. It is shown that it is feasible to employ deep learning method to carry out S-box reverse analysis, which can have better performance comparing to template attack under certain circumstances. Moreover, the predicting effect of multi-layer perception algorithm surpasses that of convolutional neural network algorithm.

Key words: deep learning, reverse analysis, S box, SM4-like algorithm

中图分类号: