[1] Protter M, Elad M, Takeda H, et al. Generalizing the nonlocal-means to super-resolution reconstruction[J]. IEEE Transactions on Image Processing, 2009, 18(1):36-51.
[2] Gao X, Wang Q, Li X, et al. Zernike-moment-based image super resolution[J]. IEEE Transactions on Image Processing, 2011, 20(10):2738-2747.
[3] Timofte R, De S V, Van G L. A+:adjusted anchored neighborhood regression for fast super-resolution[C]//Asian Conference on Computer Vision. Singapore:Springer, 2014:111-126.
[4] Yang Jianchao, Wright J, Huang Thomas, et al. Image super-resolution as sparse representation of raw image patches[C]//Conference on Computer Vision and Pattern Recognition(CVPR), Anchorage:IEEE, 2008:1-8.
[5] Hu Yanting, Wang Nannan, Tao Dacheng, et al. SERF:a simple, effective, robust, and fast image super-resolver from cascaded linear regression[J]. IEEE Transactions on Image Processing, 2016, 25(9):4091-4102.
[6] Dong Chao, Loy C C, He Kaiming, et al. Learning a deep convolutional network for image super-resolution[M]//European Conference on Computer Vision 2014(ECCV). Zurich:Springer International Publishing, 2014:184-199.
[7] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems(NIPS). Nevada:NIPS, 2012:1097-1105.
[8] Zhu Yu, Zhang Yanning, Yuille A L. Single image super-resolution using deformable patches[C]//Conference on Computer Vision and Pattern Recognition(CVPR). Columbus:IEEE, 2014:2917-2924. |