北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (1): 47-52.doi: 10.13190/j.jbupt.2018-083

• 论文 • 上一篇    下一篇

基于卷积神经网络的多OAM态识别方法

尹霄丽, 郭翊麟, 崔小舟, 常欢, 陈小政   

  1. 1. 北京邮电大学 电子工程学院, 北京 100876;
    2. 北京邮电大学 天地互联与融合北京市重点实验室, 北京 100876
  • 收稿日期:2018-05-08 出版日期:2019-02-28 发布日期:2019-03-08
  • 作者简介:尹霄丽(1970-),女,副教授,E-mail:yinxl@bupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(61575027);北京邮电大学博士研究生创新基金项目(CX2018212,CX2018213)

Method of Mode Recognition for Multi-OAM Multiplexing Based on Convolutional Neural Network

YIN Xiao-li, GUO Yi-lin, CUI Xiao-zhou, CHANG Huan, CHEN Xiao-zheng   

  1. 1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Beijing Key Laboratory of Space-Ground Interconnection and Convergence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2018-05-08 Online:2019-02-28 Published:2019-03-08

摘要: 针对不同轨道角动量(OAM)叠加的涡旋光束探测问题,提出了基于机器学习的模式识别技术,为OAM叠加光束的检测提供了一个新思路.基于修正的von Karman功率谱模型,利用功率谱反演法生成随机相位屏,应用多步衍射法数值模拟拉盖尔高斯叠加光束在大气湍流信道的传输.研究了不同波长、传输距离和大气湍流信道条件下训练的卷积神经网络(CNN)分别对各种湍流强度测试集的识别正确率.结果表明:对于较弱的湍流、波长较长的OAM光束和较短的传输距离条件,基于CNN的OAM模式识别正确率较高;对于各种湍流条件的测试数据,使用强湍流训练集训练得到的模型与使用弱湍流训练集训练得到的模型相比识别正确率更高;利用混合训练集进行训练有利于提高识别正确率.这些结果对OAM光束解复用系统的实现具有一定的参考价值.

关键词: 轨道角动量, 大气湍流, 螺旋相位谱, 卷积神经网络

Abstract: In order to solve the problem of detection of different orbital angular momentum (OAM) superimposed vortex beams, a pattern recognition technology based on machine learning (ML) is proposed, which provides a brand-new method for multi-OAM states detection. In order to study the recognition rate of multi-OAM beams using convolutional neural network (CNN) models under different wavelength, transmission distance and atmospheric turbulence conditions, the numerical simulation phase screens are generated by the power spectral inversion method based on the modified von Karman power spectrum model. Multi-step diffraction method is used to simulate numerically the propagation of OAM beams in the atmospheric turbulence, and the training and testing database are obtained under different atmospheric turbulence. Results indicate the accuracy of CNN-based OAM pattern recognition increases as wavelength increases, transmission distance decreases and turbulent intensity decreases. And the CNN trained with the database under strong turbulence has high accuracy for all kind of turbulence condition, and using mixed training database under different turbulence condition can enhance the accuracy. These results contribute to the demultiplexing systems of free space optical-OAM systems.

Key words: orbital angular momentum, atmospheric turbulence, spiral phase spectrum, convolutional neural network

中图分类号: