[1] Subakan O N, Vemuri B C. A quaternion framework for color image smoothing and segmentation[J]. International Journal of Computer Vision, 2011, 91(3):233-250.
[2] Ell T A, Sangwine S J. Hypercomplex Fourier transforms of color images[J]. IEEE Transactions on Image Processing, 2007, 16(1):22-35.
[3] Gai S. New banknote defect detection algorithm using quaternion wavelet transform[J]. Neurocomputing, 2016, 196:133-139.
[4] Bihan N L, Sangwine S J. Quaternion principal component analysis of color images[C]//2003 10th IEEE International Conference on Image Processing (ICIP 2003). Barcelona:[s.n.], 2003:809-812.
[5] 郎方年, 周激流, 闫斌, 等. 四元数矩阵正交特征向量系的求解方法及其在彩色人脸识别中的应用[J]. 自动化学报, 2008, 34(2):121-129. Lang Fangnian, Zhou Jiliu, Yan Bin, et al. Obtain method of quaternion matrix orthogonal eigenvector set and its application in color face recognition[J]. Acta Automatica Sinica, 2008, 34(2):121-129.
[6] Sun Y F, Chen S Y, Yin B C. Color face recognition based on quaternion matrix representation[J]. Pattern Recognition Letters, 2011, 32(4):597-605.
[7] Chen B J, Yang J H, Jeon B, et al. Kernel quaternion principal component analysis and its application in RGB-D object recognition[J]. Neurocomputing, 2017(266):293-303.
[8] Saoud L S, Ghorbani R, Rahmoume F. Cognitive quaternion valued neural network and some applications[J]. Neurocomputing, 2017(221):85-93.
[9] 王金伟, 周春飞, 王水平, 等. 基于分数阶四元数傅里叶变换的彩色图像自适应水印算法[J]. 电子与信息学报, 2016, 38(11):2832-2839. Wang Jingwei, Zhou Chunfei, Wang Shuiping, et al. Color image adaptive watermarking algorithm using fractional quaternion Fourier transform[J]. Journal of Electronics and Information Technology, 2016, 38(11):2832-2839.
[10] Yang H Y, Liang L L, Li Y W, et al. Quaternion exponent moments and their invariants for color image[J]. Fundamenta Informaticae, 2016, 145(2):189-205.
[11] Chen B J, Qi X M, Sun X M, et al. Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection[J]. Journal of Visual Communication and Image Representation, 2017(49):283-290.
[12] Assefa D, Mansinha L, Tiampo K F, et al. The trinion Fourier transform of color images[J]. Signal Processing, 2011, 91(8):1887-1900.
[13] Schölkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319.
[14] Eftekhari A, Forouzanfar M, Moghaddam H A, et al. Block-wise 2D kernel PCA/LDA for face recognition[J]. Information Processing Letters, 2010, 110(17):761-766.
[15] Sun N, Wang H X, Ji Z H, et al. An efficient algo-rithm for kernel two-dimensional principal component analysis[J]. Neural Computing Applications, 2008, 17(1):59-64.
[16] Goswami G, Vatsa M, Singh R. RGB-D face recognition with texture and attribute features[J]. IEEE Transactions on Information Forensic and Security, 2014, 9(10):1629-1640.
[17] Browatzki B, Fischer J, Graf B, et al. Going into depth:evaluating 2D and 3D cues for object classification on a new, large-scale object dataset[C]//2011 IEEE International Conference on Computer Vision Workshops (ICCV2011). Barcelona:[s.n.], 2011:1189-1195.
[18] Tang J H, Jin L, Li Z C, et al. RGB-D object recognition via incorporating latent data structure and prior knowledge[J]. IEEE Transactions on Multimedia, 2015, 17(11):1899-1908.
[19] Cheng Y, Zhao X, Huang K, et al. Semi-supervised learning and feature evaluation for RGB-D object recognition[J]. Computer Vision and Image Understanding, 2015, 139:149-160.
[20] Bo L F, Ren X F, Fox D. Unsupervised feature learning for RGB-D based object recognition[C]//13th International Symposium on Experimental Robotics. Québec City:[s.n.], 2013:387-402.
[21] Wang A R, Lu J W, Cai J F, et al. Large-margin multi-modal deep learning for RGB-D object recognition[J]. IEEE Transactions on Multimedia, 2015, 17(11):1887-1898.
[22] Zhang H, Parker L E. CoDe4D:color-depth local spatio-temporal features for human activity recognition from RGB-D videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(3):541-555. |