北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (5): 69-77.doi: 10.13190/j.jbupt.2018-205
面向5G的物理层安全技术综述
任品毅, 唐晓
- 1. 西安交通大学 电子与信息工程学院, 西安 710049;
2. 陕西省智慧网络与泛在互联工程技术研究中心, 西安 710049
-
收稿日期:
2018-08-20出版日期:
2018-10-28发布日期:
2018-11-20 -
作者简介:
任品毅(1971-),男,教授,博士生导师;唐晓(1988-),男,博士生,E-mail:xiaotang@stu.xjtu.edu.cn. -
基金资助:
陕西省重点研发计划重点项目(2017ZDXM-GY-012);国家自然科学基金重点项目(61431011)
A Review on Physical Layer Security Techniques for 5G
REN Pin-yi, TANG Xiao
- 1. School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2. Shaanxi Smart Networks and Ubiquitous Access Research Center, Xi'an 710049, China
-
Received:
2018-08-20Online:
2018-10-28Published:
2018-11-20 -
Supported by:
摘要: 从3个方面对第5代移动通信系统(5G)中物理层安全技术的研究和应用进行了回顾,包括5G中的新型传输技术与物理层安全技术的结合、5G新型网络场景下的安全保障以及5G中新型安全威胁的应对.综述了最新的研究成果,指出了尚待解决的问题和未来的研究方向.
中图分类号:
引用本文
任品毅, 唐晓. 面向5G的物理层安全技术综述[J]. 北京邮电大学学报, 2018, 41(5): 69-77.
REN Pin-yi, TANG Xiao. A Review on Physical Layer Security Techniques for 5G[J]. JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOM, 2018, 41(5): 69-77.
[1] Andrews J G, Buzzi S, Choi W, et al. What will 5G be?[J]. IEEE J Sel Areas Commun, 2014, 32(6):1065-1082. [2] Wang C X, Haider F, Gao X, et al. Cellular architecture and key technologies for 5G wireless communication networks[J]. IEEE Commun Mag, 2014, 52(2):122-130. [3] Mukherjee A, Fakoorian S A A, Huang J, et al. Principles of physical layer security in multiuser wireless networks:a survey[J]. IEEE Commun Surveys & Tuts, 2014, 16(3):1550-1573. [4] Wu Y, Khisti A, Xiao C, et al. A survey of physical layer security techniques for 5G wireless networks and challenges ahead[J]. IEEE J Sel Areas Commun, 2018, 36(4):679-695. [5] Sun L, Du Q. Physical layer security with its applications in 5G networks:a review[J]. China Commun, 2017, 14(12):1-14. [6] Shannon C E. Communication theory of secrecy systems[J]. The Bell Sys Tech J, 1949, 28(4):656-715. [7] Wyner A D. The wire-tap channel[J]. The Bell Sys Tech J, 1975, 54(8):1355-1387. [8] Zhou X, Mckay M R. Secure transmission with artificial noise over fading channels:achievable rate and optimal power allocation[J]. IEEE Trans Veh Technol, 2010, 59(8):3831-3842. [9] Wang B, Mu P, Li Z. Artificial-noise-aided beamforming design in the MISOME wiretap channel under the secrecy outage probability constraint[J]. IEEE Trans Wireless Commun, 2017, 16(11):7207-7220. [10] Li N, Tao X, Xu J. Artificial noise assisted communication in the multiuser downlink:optimal power allocation[J]. IEEE Commun Lett, 2015, 19(2):295-298. [11] Chen X, Ng D W K, Gerstacker W, et al. A survey on multiple-antenna techniques for physical layer security[J]. IEEE Commun Surveys & Tuts, 2017, 19(2):1027-1053. [12] Zhang G, Li X, Cui M, et al. Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems[J]. IET Commun, 2016, 10(7):796-804. [13] Wu Y, Chen X, Chen X. Secure beamforming for cognitive radio networks with artificial noise[C]//Proc WCSP. Nanjing China:IEEE, 2015:1-5. [14] Sendonaris A, Erkip E, Aazhang B. User cooperation diversity. part I. system description[J]. IEEE Trans Commun, 2003, 51(11):1927-1938. [15] Wang W, Teh K C, Li K H. Generalized relay selection for improved security in cooperative DF relay networks[J]. IEEE Wireless Commun Lett, 2016, 5(1):28-31. [16] Hui H, Swindlehurst A L, Li G, et al. Secure relay and jammer selection for physical layer security[J]. IEEE Signal Process Lett, 2015, 22(8):1147-1151. [17] Guo H, Yang Z, Zhang L, et al. Joint cooperative beamforming and jamming for physical-layer security of decode-and-forward relay networks[J]. IEEE Access, 2017(5):19620-19630. [18] Chou T H, Draper S C, Sayeed A M. Secret key generation from sparse wireless channels:Ergodic capacity and secrecy outage[J]. IEEE J Sel Areas Commun, 2013, 31(9):1751-1764. [19] Im S, Choi J, Ha J. Secret key agreement for massive MIMO systems with two-way training under pilot contamination attack[C]//Proc GC Wkshps. San Diego, USA:IEEE, 2015:1-6. [20] Molisch A F, Ratnam V V, Han S, et al. Hybrid beamforming for massive MIMO:a survey[J]. IEEE Commun Mag, 2017, 55(9):134-141. [21] Zhu J, Schober R, Bhargava V K. Linear precoding of data and artificial noise in secure massive MIMO systems[J]. IEEE Transa Wireless Commun, 2016, 15(3):2245-2261. [22] Zhu J, Schober R, Bhargava V K. Secure transmission in multicell massive MIMO systems[J]. IEEE Transa Wireless Commun, 2014, 13(9):4766-4781. [23] Asaad S, Bereyhi A, Rabiei A M, et al. Optimal transmit antenna selection for massive MIMO wiretap channels[J]. IEEE J Sel Areas Commun, 2018, 36(4):817-828. [24] Chen J, Chen X, Gerstacker W H, et al. Resource allocation for a massive MIMO relay aided secure communication[J]. IEEE Trans Inf Forensics Sec, 2016, 11(8):1700-1711. [25] Wang L, Wong K, Elkashlan M, et al. Secrecy and energy efficiency in massive MIMO aided heterogeneous C-RAN:a new look at interference[J]. IEEE J Sel Topics Signal Process, 2016, 10(8):1375-1389. [26] Guo K, Guo Y, Ascheid G. Security-constrained power allocation in MU-massive-MIMO with distributed antennas[J]. IEEE Trans Wireless Commun, 2016, 15(12):8139-8153. [27] Zhang R, Cai L, Zhong Z, et al. Cross-polarized three-dimensional channel measurement and modeling for small-cell street canyon scenario[J]. IEEE Trans Veh Technol, 2018, 67(9):7969-7983. [28] Hemadeh I A, Satyanarayana K, El-Hajjar M, et al. Millimeter-wave communications:physical channel models, design considerations, antenna constructions, and link-budget[J]. IEEE Commun Surveys & Tuts, 2018, 20(2):870-913. [29] Huang Y, Zhang J, Xiao M. Constant envelope hybrid precoding for directional millimeter-wave communications[J]. IEEE J Sel Areas Commun, 2018, 36(4):845-859. [30] Vuppala S, Tolossa Y J, Kaddoum G, et al. On the physical layer security analysis of hybrid millimeter wave networks[J]. IEEE Trans Commun, 2018, 66(3):1139-1152. [31] Ramadan Y R, Minn H. Artificial noise aided hybrid precoding design for secure mmWave MISO systems with partial channel knowledge[J]. IEEE Signal Process Lett, 2017, 24(11):1729-1733. [32] Eltayeb M E, Choi J, Al-Naffouri T Y, et al. Enhancing secrecy with multiantenna transmission in millimeter wave vehicular communication systems[J]. IEEE Trans Veh Technol, 2017, 66(9):8139-8151. [33] Zhu Y, Wang L, Wong K, et al. Secure communications in millimeter wave ad hoc networks[J]. IEEE Transa Wireless Commun, 2017, 16(5):3205-3217. [34] Wang W, Zheng Z. Hybrid MIMO andphased-array directional modulation for physical layer security in mmWave wireless communications[J]. IEEE J Sel Areas Commun, 2018, 36(7):1383-1396. [35] Islam S M R, Avazov N, Dobre O A, et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems:potentials and challenges[J]. IEEE Commun Surveys & Tuts, 2017, 19(2):721-742. [36] Lv L, Ding Z, Ni Q, et al. Secure MISO-NOMA transmission with artificial noise[J]. IEEE Trans Veh Technol, 2018, 67(7):6700-6705. [37] Liu Y, Qin Z, Elkashlan M, et al. Enhancing the physical layer security of non-orthogonal multiple access in large-scale networks[J]. IEEE Transa Wireless Commun, 2017, 16(3):1656-1672. [38] Lei H, Zhang J, Park K, et al. On secure NOMA systems with transmit antenna selection schemes[J]. IEEE Access, 2017(5):17450-17464. [39] He B, Liu A, Yang N, et al. On the design of secure non-orthogonal multiple access systems[J]. IEEE J Sel Areas Commun, 2017, 35(10):2196-2206. [40] Chen J, Yang L, Alouini M. Physical layer security for cooperative NOMA systems[J]. IEEE Trans Veh Technol, 2018, 67(5):4645-4649. [41] Xu L, Nallanathan A, Pan X, et al. Security-aware resource allocation with delay constraint for NOMA-Based cognitive radio network[J]. IEEE Trans Inf Forensics Sec, 2018, 13(2):366-376. [42] Kim D, Lee H, Hong D. A survey of in-band full-duplex transmission:from the perspective of PHY and MAC layers[J]. IEEE Commun Surveys & Tuts, 2015, 17(4):2017-2046. [43] Zhu F, Gao F, Zhang T, et al. Physical-layer security for full duplex communications with self-Interference mitigation[J]. IEEE Transa Wireless Commun, 2016, 15(1):329-340. [44] Sun Y, Ng D W K, Zhu J, et al. Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems[J]. IEEE Transa Wireless Commun, 2016, 15(8):5511-5526. [45] Mahmood N H, Ansari I S, Popovski P, et al. Physical-Layer security with full-duplex transceivers and multiuser receiver at eve[J]. IEEE Trans Commun, 2017, 65(10):4392-4405. [46] Tang W, Feng S, Ding Y, et al. Physical layer security in heterogeneous networks with jammer selection and full-duplex users[J]. IEEE Transa Wireless Commun, 2017, 16(12):7982-7995. [47] Tian F, Chen X, Liu S, et al. Secrecy rate optimization in wirelessmulti-hop full duplex networks[J]. IEEE Access, 2018(6):5695-5704. [48] Chen G, Gong Y, Xiao P, et al. Physical layer network security in the full-duplex relay system[J]. IEEE Trans Inf Forensics Sec, 2015, 10(3):574-583. [49] Parsaeefard S, Le-Ngoc T. Improving wireless secrecy rate via full-duplex relay-assisted protocols[J]. IEEE Trans Inf Forensics Sec, 2015, 10(10):2095-2107. [50] Wang Y, Sun R, Wang X. Transceiver design to maximize the weighted sum secrecy rate infull-duplex SWIPT systems[J]. IEEE Signal Process Lett, 2016, 23(6):883-887. [51] Bi Y, Chen H. Accumulate and jam:Towards secure communication via a wireless-powered full-duplex jammer[J]. IEEE J Sel Topics Signal Process, 2016, 10(8):1538-1550. [52] Lv T, Gao H, Yang S. Secrecy transmit beamforming for heterogeneous networks[J]. IEEE J Sel Areas Commun, 2015, 33(6):1154-1170. [53] Zhong Z, Peng J, Luo W, et al. A tractable approach to analyzing the physical-layer security in K-tier heterogeneous cellular networks[J]. China Commun, 2015, 12(Sup):166-173. [54] Wang B, Huang K, Xu X, et al. Resource allocation for secure communication in K-tier heterogeneous cellular networks:a spatial-temporal perspective[J]. IEEE Access, 2018(6):772-782. [55] Tang X, Ren P, Han Z. Hierarchical competition as equilibrium program with equilibrium constraints towards security-enhanced wireless networks[J]. IEEE J Sel Areas Commun, 2018, 36(7):1564-1578. [56] Wang L, Wong K, Jin S, et al. A new look at physical layer security, caching, and wireless energy harvesting for heterogeneous ultra-dense networks[J]. IEEE Commun Mag, 2018, 56(6):49-55. [57] Jia M, Li D, Yin Z, et al. High spectral efficiency secure communications with non-orthogonal physical and multiple access layers[J]. IEEE Internet Things J, 2018. [58] Hu L, Wen H, Wu B, et al. Cooperative jamming for physical layer security enhancement in Internet of things[J]. IEEE Internet Things J, 2018, 5(1):219-228. [59] Xu Q, Ren P, Song H, et al. Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations[J]. IEEE Access, 2016, 4:2840-2853. [60] Atat R, Liu L, Ashdown J, et al. A physical layer security scheme for mobile health cyber-physical systems[J]. IEEE Internet Things J, 2018, 5(1):295-309. [61] Xu Q, Ren P, Song H, et al. Security-aware waveforms for enhancing wireless communications privacy in cyber-physical systems via multipath receptions[J]. IEEE Internet Things J, 2017, 4(6):1924-1933. [62] Tang X, Ren P, Han Z. Distributed power optimization for security-aware multi-channel full-duplex communications:a variational inequality framework[J]. IEEE Trans Commun, 2017, 65(9):4065-4079. [63] Wang Q, Chen Z, Mei W, et al. Improving physical layer security using UAV-enabled mobile relaying[J]. IEEE Wireless Commun Lett, 2017, 6(3):310-313. [64] Lee H, Eom S, Park J, et al. UAV-aided secure communications with cooperative jamming[J]. IEEE Trans Veh Technol, 2018, 67(10):9385-9392. [65] Zhao N, Cheng F, Yu F R, et al. Caching UAV assisted secure transmission in hyper-dense networks based on interference alignment[J]. IEEE Trans Commun, 2018, 66(5):2281-2294. [66] Tang X, Ren P, Wang Y, et al. Combatingfull-duplex active eavesdropper:a hierarchical game perspective[J]. IEEE Trans Commun, 2017, 65(3):1379-1395. [67] Abedi M R, Mokari N, Saeedi H, et al. Robust resource allocation to enhance physical layer security in systems with full-duplex receivers:active adversary[J]. IEEE Transa Wireless Commun, 2017, 16(2):885-899. [68] Li L, Petropulu A P, Chen Z. MIMO secret communications against an active eavesdropper[J]. IEEE Trans Inf Forensics Sec, 2017, 12(10):2387-2401. [69] Xu D, Ren P, Lin H. Combat hybrid eavesdropping inpower-domain NOMA:joint design of timing channel and symbol transformation[J]. IEEE Trans Veh Technol, 2018, 67(6):4998-5012. [70] Chen B, Zhu C, Li W, et al. Original symbol phase rotated secure transmission against powerful massive MIMO eavesdropper[J]. IEEE Access, 2016(4):3016-3025. [71] Babaei A, Aghvami A H, Shojaeifard A, et al. full-duplex small-cell networks:a physical-layer security perspective[J]. IEEE Trans Commun, 2018, 66(7):3006-3021. [72] Pinto P C, Barros J, Win M Z. Secure communication in stochastic wireless networks-part Ⅱ:maximum rate and collusion[J]. IEEE Trans Inf Forensics Sec, 2012, 7(1):139-147. [73] Vuppala S, Abreu G. Asymptotic secrecy analysis of random networks with colluding eavesdroppers[J]. IEEE Systems Journal, 2018, 12(1):871-880. [74] Jiang K, Jing T, Huo Y, et al. SIC-based secrecy performance in uplink NOMA multi-eavesdropper wiretap channels[J]. IEEE Access, 2018, 6:19664-19680. [75] Wang W, Teh K C, Li K H, et al. On the impact of adaptive eavesdroppers inmulti-antenna cellular networks[J]. IEEE Trans Inf Forensics Sec, 2018, 13(2):269-279. [76] Xiong Q, Liang Y, Li K H, et al. Secure transmission against pilot spoofing attack:a two-way training-based scheme[J]. IEEE Trans Inf Forensics Sec, 2016, 11(5):1017-1026. [77] Xu D, Ren P, Ritcey J A, et al. Code-frequency block group coding for anti-spoofing pilot authentication in multi-antenna OFDM systems[J]. IEEE Trans Inf Forensics Sec, 2018, 13(7):1778-1793. [78] Tang X, Ren P, Han Z. Jamming mitigation via hierarchical security game for IoT communications[J]. IEEE Access, 2018(6):5766-5779. |
[1] | 李民政 曹宇青 颜娟娟 陆健. 多智能反射面辅助毫米波级联信道估计方法[J]. 北京邮电大学学报, 2023, 46(4): 15-20. |
[2] | 李子能 胡智群 肖海林 曾张帆. 基于智能反射面和协作干扰的无人机安全通信算法[J]. 北京邮电大学学报, 2023, 46(1): 69-76. |
[3] | 李美玲 刘畅 杨晓霞 薛凯轩 路兆铭. 认知NOMA系统中基于IRS的V2V网络物理层安全性能研究[J]. 北京邮电大学学报, 2022, 45(6): 131-137. |
[4] | 余佳润 王亚峰. 一种低信噪比下基于深度学习的DoA估计方法[J]. 北京邮电大学学报, 2022, 45(6): 119-125. |
[5] | 李松 王新荣 王博文 孙彦景 陈瑞瑞. 基于随机网络演算的车联网边缘计算性能分析[J]. 北京邮电大学学报, 2022, 45(5): 16-22. |
[6] | 张嘉驰, 刘留, 李璐, 谈振辉, 周涛. 基于3D几何信道模型非对称波束信道特性分析[J]. 北京邮电大学学报, 2022, 45(2): 98-103. |
[7] | 李美玲, 杨晓霞, 成文杰, 路兆铭. 车联网CR-NOMA系统物理层安全性能分析[J]. 北京邮电大学学报, 2022, 45(1): 115-120. |
[8] | 朱子珅, 章晨宇, 王鲁晗, 路兆铭, 温向明. 基于异构计算加速的开源5G架构[J]. 北京邮电大学学报, 2022, 45(1): 63-68. |
[9] | 刘宇, 温向明, 王鲁晗, 路兆铭, 杜科良. 基于VPP的高性能UPF原型[J]. 北京邮电大学学报, 2021, 44(6): 89-95. |
[10] | 李虎, 韦再雪, 程振桥, 杨鸿文. 透镜天线毫米波MIMO系统中基于开关结构的HBF算法[J]. 北京邮电大学学报, 2021, 44(4): 26-33. |
[11] | 薛建彬, 白子梅. 边缘计算中移动终端安全高效认证协议[J]. 北京邮电大学学报, 2021, 44(1): 110-116. |
[12] | 张平, 许晓东, 韩书君, 牛凯, 许文俊, 兰岳恒. 智简无线网络赋能行业应用[J]. 北京邮电大学学报, 2020, 43(6): 1-9. |
[13] | 陈佩佩, 李陶深, 葛志辉, 方兴. 全双工能量受限中继网络的安全波束成形设计[J]. 北京邮电大学学报, 2020, 43(2): 59-65,79. |
[14] | 雷维嘉, 李环. 全双工系统中基于神经网络的自干扰消除方案[J]. 北京邮电大学学报, 2020, 43(1): 61-67. |
[15] | 慕熹东, 郭莉, 董超, 林家儒. 一种基于无人机毫米波通信的波束选择方法[J]. 北京邮电大学学报, 2019, 42(3): 120-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||