[1] ITU-R. Recommendation. 2038 framework and overall objectives of the future development of IMT for 2020 and beyond[EB/OL]. (2015-09-29)[2018-10-23]. https://www.itu.int/rec/R-REC-M.2083-0-201509-I/en.
[2] Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular:It Will Work![J]. IEEE Access, 2013, 1(1):335-349.
[3] Larsson E G, Edfors O, Tufvesson F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2):186-195.
[4] 王莹, 缪中宇, 张平. 超高密度网络关键技术及研究现状[J]. 北京邮电大学学报, 2015, 38(5):1-17. Wang Y, Miu Z Y, Zhang P. Research progress and key technologies in ultra dense networks[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(5):1-17.
[5] Cheng X, Yao Q, Wen M, et al. Wideband channel modeling and intercarrier interference cancellation for vehicle-to-vehicle communication systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(9):434-448.
[6] Rappaport T S, Xing Y, Maccartney G R, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12):6213-6230.
[7] Shafi M, Molisch A F, Smith P J, et al. 5G:a tutorial overview of standards, trials, challenges, deployment and practice[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(6):1201-1221.
[8] Haneda K, Zhang J, Tian L, et al. 5G 3GPP-like channel models for outdoor urban microcellular and macrocellular environments[C]//2016 IEEE 83rd Vehicular Technology Conference (VTC Spring). Nanjing:IEEE, 2016:1-7.
[9] Zhang J, Zhang Y, Yu Y, et al. 3-D MIMO:how much does it meet our expectations observed from channel measurements?[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(8):1887-1903.
[10] Zhang J, Tang P, Tian L, et al. 6~100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication[J]. Science China Information Sciences, 2017, 60(8):80301.
[11] Zhao X, Zhang H, Geng S, et al. A novel full path-loss model for a street crossing in urban microcells[J]. IEEE Transactions on Antennas & Propagation, 2015, 63(12):5878-5883.
[12] Dou J, Tian L, Wang H, et al. 45 GHz propagation channel modeling for an indoor conference scenario[C]//2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Hong Kong:IEEE, 2015:2225-2228.
[13] 3GPP TR 36. 873 V12.7.0 Study on 3D channel model for LTE[EB/OL]. (2018-01-05)[2018-10-23]. http://www.3gpp.org/ftp//Specs/archive/36_series/36.873/36873-c70.zip.
[14] 3GPP TR 38.900 V15.0.0 Study on channel model for frequency spectrum above 6 GHz[EB/OL]. (2018-06-29)[2018-10-23]. http://www.3gpp.org/ftp//Specs/archive/38_series/38.900/38900-f00.zip.
[15] 3GPP TR 38.901 V150.0 Study on channel model for frequencies from 0.5 to 100 GHz[EB/OL]. (2018-06-29)[2018-10-23]. http://www.3gpp.org/ftp//Specs/archive/38_series/38.901/38901-f00.zip.
[16] ITU-R. Report M. 2412-0 Guidelines for evaluation of radio interface technologies for IMT-2020[EB/OL]. (2017-12-18)[2018-10-23]. https://www.itu.int/pub/R-REP-M.2412-2017.
[17] ITU-R. Report M. 2135 Guidelines for evaluation of radio interface technologies for IMT-Advanced[EB/OL]. (2008-12-17)[2018-10-23]. https://www.itu.int/pub/R-REP-M.2135-2008/en.
[18] Zhang W, Tian L, Wu Z, et al. Dynamic range impact on 3D MIMO channel characteristics in rural-macro scenario at 3.5 GHz[C]//2017 11th European Conference on Antennas and Propagation (EUCAP). London:IEEE, 2018:1-5.
[19] Tian L, Zhang J, Zhang Y, et al. Spatial characteristics of 3D MIMO wide band channel in indoor hotspot scenario at 3.5 GHz[C]//2018 IEEE/CIC International Conference on Communications in China. Beijing:IEEE, 2018:1-5. |