北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2008, Vol. 31 ›› Issue (5): 61-64.doi: 10.13190/jbupt.200805.61.333

• 论文 • 上一篇    下一篇

优化的EPON前摄Polling机制

张晋豫1, 黄成富2, 王 众2, 梁满贵1   

  1. 1. 北京交通大学 计算机学院, 北京 100044; 2. 中国有线网络有限公司, 北京 100045
  • 收稿日期:2007-08-12 修回日期:1900-01-01 出版日期:2008-10-30 发布日期:2008-10-30
  • 通讯作者: 张晋豫

Predictive Polling Mechanism on EPON

ZHAGN Jin-Yu1, Huang Cheng-Fu2, Wang Zhong2, LIANG Man-Gui1   

  1. 1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;
    2. China Cable Television Network Limited Corporation, Beijing 100045, China
  • Received:2007-08-12 Revised:1900-01-01 Online:2008-10-30 Published:2008-10-30
  • Contact: ZHAGN Jin-Yu

摘要:

利用由多个关键报告生成的插值多项式预测方程来预测未来几个周期的业务量,通过1个消息(grant)对多个周期的授权,节省了带宽和减少了数据包的时延. 建立了知识支撑系统(KSS)系统,通过偏导(DC)寻优法来优化关键周期和预测周期的个数,通过神经网络来优化非线形预测方程的调节因子. 仿真结果很好地验证了它的效果.

关键词: 以太无源光网络, 神经网络, 轮巡, 优化

Abstract:

The mechanism forecasts the traffic for many cycles through the prediction function of interpolating polynomial produced by the reports of many key cycles, and grants many cycles at a time. Not only can it save bandwidth, but also reduce the data packet delay. A knowledge support system(KSS)is set up. The key cycle number and predictive cycle number is optimized by the differential coefficient (DC)optimizing method, the adaptive factors of the non-lineal prediction function are optimized by the neural network. Simulation verifies its merits very well.

Key words: ethernet passive optical network, neural network, polling, optimize

中图分类号: