北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (5): 71-76.doi: 10.13190/j.jbupt.2020-071

• 论文 • 上一篇    下一篇

基于高速多核网络的远监督关系抽取方法

李威1, 陈曙东1,2, 欧阳小叶2, 杜蓉2, 王荣3   

  1. 1. 中国科学院大学 微电子学院, 北京 100049;
    2. 中国科学院 微电子研究所, 北京 100029;
    3. 北京跟踪与通信技术研究所 空间目标测量重点实验室, 北京 100094
  • 收稿日期:2020-06-20 发布日期:2021-03-11
  • 通讯作者: 陈曙东(1977-),女,研究员,博士生导师,E-mail:chenshudong@ime.ac.cn. E-mail:chenshudong@ime.ac.cn
  • 作者简介:李威(1995-),男,硕士生.
  • 基金资助:
    中国科学院战略性先导科技专项(C类)(XDC02070600)

Distant Supervision Relation Extraction Method Based on Highway Multi-Kernel Network

LI Wei1, CHEN Shu-dong1,2, OUYANG Xiao-ye2, DU Rong2, WANG Rong3   

  1. 1. School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
    2. Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
    3. Key Laboratory of Space Object Measurement, Department, Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China
  • Received:2020-06-20 Published:2021-03-11

摘要: 远监督作为一种能够快速大量产生标注数据的技术,在关系抽取任务中的应用愈加广泛,但仍存在文本特征提取不足、包内噪声过多等问题.对此,提出了一种基于高速多核网络的远监督关系抽取方法.首先通过高速网络和多核卷积对句子特征进行深层提取;然后采用包内注意力机制提高包内正确标注的句子权重,降低包内噪声,实现包级向量化;使用包间注意力机制降低包间噪声,得到组级向量化;最后,将组作为训练样本训练分类器,实现关系抽取.实验结果表明,该方法比现有方法具有更好的关系抽取性能.

关键词: 关系抽取, 远监督, 注意力机制, 神经网络, 高速多核网络模型

Abstract: As a technology that can quickly generate large amounts of labeled data, the distant supervision is increasingly used in relation extraction. However, there are still problems such as insufficient text feature extraction and noise in the bag. A distant supervision relation extraction method based on highway multi-kernel network is proposed to solve these questions. Firstly, the feature of sentences are deeply extracted by highway network and multi-kernel convolution; and then the intra-bag attention mechanism is used to improve the sentence weight of the correct annotation in bag and reduce the intra-bag noise to obtain the bag‘s embedding. Subsequently, the inter-bag attention mechanism is used to reduce the inter-bag noise for each group of bags with the same relation to obtain the group‘s embedding. Finally, groups are used as training samples to train the classifier to achieve relation extraction. Experiment shows that this method has better relation extraction performance than existing methods.

Key words: relation extraction, distant supervision, attention mechanism, neural network, highway multi-kernel network

中图分类号: