北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (6): 20-28.doi: 10.13190/j.jbupt.2019-097

• 论文 • 上一篇    下一篇

基于Faster R-CNN模型X-射线图像的焊接缺陷检测

郭文明, 刘凯, 渠慧帆   

  1. 北京邮电大学 软件学院, 北京 100876
  • 收稿日期:2019-05-31 出版日期:2019-12-28 发布日期:2019-11-15
  • 作者简介:郭文明(1967-),男,副教授,硕士生导师,E-mail:guowenming@163.com.
  • 基金资助:
    国家重大科学仪器设备专项项目(2013YQ240803)

Welding Defect Detection of X-Ray Images Based on Faster R-CNN Model

GUO Wen-ming, LIU Kai, QU Hui-fan   

  1. School of Software Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2019-05-31 Online:2019-12-28 Published:2019-11-15
  • Supported by:
     

摘要: 为了实现X-射线图片的焊接缺陷检测,采用了基于目标检测领域的经典模型——Faster R-CNN的目标检测方法.WDXI数据集是从大量的X-射线图像整理和分类构建获得的,包括7种缺陷类型和无缺陷类型.为了有效地提取焊接区域,提出了一种根据平均灰度值和单位面积内平均对比度值的改进方法.经过实验验证,可采取自适应的直方图均衡化以及两次中值滤波的方法分别进行图像增强和降噪处理.最终,在焊接缺陷识别的多分类任务中,训练模型在测试集上达到了预期效果,不仅证明了WDXI数据集的研究价值,还为实现焊接缺陷的自动识别和定位进行了实验性的尝试.

关键词: 焊接缺陷检测, 无损检测, X-射线图像, 目标检测, 卷积神经网络

Abstract: Based on faster region-based convolutional neural networks (R-CNN) model, a classical model in the field of object detection is used to achieve welding defect detection of X-ray images. A great number of X-ray images are collected and sorted out into the dataset, called WDXI, including no-defect type and 7 defect types. Firstly, an improved method can be used to extract the welding area effectively according to the average gray value and the average contrast value per unit area. The adaptive histogram equalization is used for image enhancement and double median blur is used for noise reduction after experimental comparison. Finally, the testing on the pre-trained model is expected and acceptable in the multi-classification problem of welding defects recognition, and not only proves the research value of WDXI, but also contributes towards making an experiment attempt for improving automatic classification and localization of welding defects combined with Faster R-CNN model.

Key words: welding defects detection, non-destructive testing, X-ray image, object detection, convolution neural networks

中图分类号: