北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (6): 29-34.doi: 10.13190/j.jbupt.2019-124

• 论文 • 上一篇    下一篇

大数据环境下基于深度学习的行人再识别

李鹏1, 王德勇1, 师文喜1, 姜志国2   

  1. 1. 中国电子科技集团公司电子科学研究院 新疆联海创智信息科技有限公司, 北京 100041;
    2. 北京航空航天大学 宇航学院, 北京 100191
  • 收稿日期:2019-07-01 出版日期:2019-12-28 发布日期:2019-11-15
  • 通讯作者: 师文喜(1987-),男,高级工程师,E-mail:swxcetc@163.com. E-mail:swxcetc@163.com
  • 作者简介:李鹏(1988-),男,博士后.
  • 基金资助:
     

Research on Person Re-Identification Based on Deep Learning under Big Data Environment

LI Peng1, WANG De-yong1, SHI Wen-xi1, JIANG Zhi-guo2   

  1. 1. China Academy of Electronics and Information Technology, Xinjiang Lianhai INA-INT Information Technology Limited, Beijing 100041, China;
    2. Beihang University, School of Astronautics, Beijing 100191, China
  • Received:2019-07-01 Online:2019-12-28 Published:2019-11-15
  • Supported by:
     

摘要: 针对卷积神经网络在行人识别过程中错误率较高的问题,提出了一种基于深度胶囊模型的行人再识别方法.首先利用标准卷积层学习区分度较高的特征;然后将不同卷积层中的若干特征划分为一组,生成一个具有丰富语义特征的主胶囊.在此基础上,引入了动态路由算法,通过迭代路由过程来确定主胶囊和数字胶囊之间的归属关系,进而得到一组数字胶囊,其中,每个数字胶囊可以学习识别目标行人的存在.在具有挑战性的数据集上进行实验的结果表明,所提算法在性能上优于已有算法.

关键词: 行人再识别, 卷积神经网络, 胶囊网络, 主胶囊, 数字胶囊

Abstract: Convolutional neural networks produce higher probability of error for person re-identifications. To overcome the shortcomings, a new deep learning method based on capsule networks model for person re-identification was proposed. First, the standard convolutional layers are used to learn discriminative features. Then, several features in different layers are grouped together to form the primary capsules which represent a rich semantic features. After that, a dynamic routing algorithm which is an iterative routing process, is introduced to decide the attribution between primary capsule and digital capsule. To this end, the digital capsule layer is obtained and each capsule can learn to recognize the presence of persons. To highlight the superiorities of the proposed algorithm, extensive experiments are conducted on a series of challenging datasets and show that the algorithm favorably performs against the previous work.

Key words: person re-identification, convolutional neural networks, capsule networks, primary capsule, digital capsule

中图分类号: