[1] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems.[S. l.]:Curran Associates Inc, 2012:1097-1105.
[2] Lampert C H, Nickisch H, Harmeling S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3):453-465.
[3] 乔雪, 彭晨, 段贺, 等. 基于共享特征相对属性的零样本图像分类[J]. 电子与信息学报, 2017, 39(7):1563-1570. Qiao Xue, Peng Chen, Duan He, et al. Zero-shotimage classification based on relative feature of shared features[J]. Journal of Electronics and Information Technology, 2017, 39(7):1563-1570.
[4] 程玉虎, 乔雪, 王雪松. 基于混合属性的零样本图像分类[J]. 电子学报, 2017, 45(6):1462-1468. Cheng Yuhu, Qiao Xue, Wang Xuesong. Zero-shot image classification based on mixed attributes[J]. Chinese Journal of Electronics, 2017, 45(6):1462-1468.
[5] Socher R, Ganjoo M, Manning C D, et al. Zero-shot learning through cross-modal transfer[C]//Advances in Neural Information Processing Systems.[S. l.]:Curran Associates Inc, 2013:935-943.
[6] Fu Y, Hospedales T M, Xiang T, et al. Transductive multi-view zero-shot learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(11):2332-2345.
[7] Kodirov E, Xiang T, Gong S. Semantic autoencoder for zero-shot learning[C]//CVPR 2017. Piscataway, NJ:IEEE, 2017:4447-4456.
[8] Li Y, Wang D, Hu H, et al. Zero-shot recognition using dual visual-semantic mapping paths[C]//IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Computer Society, 2017:5207-5215.
[9] Zhang L, Xiang T, Gong S. Learning a deep embedding model for zero-shot learning[EB/OL]. 2016. http://arxiv.org/abs/1611.050B8.
[10] Frome A, Corrado G S, Shlens J, et al. DeViSE:a deep visual-semantic embedding model[C]//International Conference on Neural Information Processing Systems.[S. l.]:Curran Associates Inc, 2013:2121-2129.
[11] 李亚, 王广润, 王青. 基于深度卷积神经网络的跨年龄人脸识别[J]. 北京邮电大学学报, 2017, 40(1):84-88. Li Ya, Wang Guangrun, Wang Qing. Cross-age face recognition based on deep convolutional neural network[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1):84-88.
[12] Liao S, Hu Y, Zhu X, et al. Person reidentification by local maximal occurrence representation and metric learning[EB/OL]. 2014. http://arxiv.org/abs/1406.4216.
[13] Moghaddam B, Jebara T, Pentland A. Bayesian face recognition[J]. Pattern Recognition, 2000, 33(11):1771-1782.
[14] Zhang Z, Saligrama V. Zero-shot learning via joint latent similarity embedding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco:CA, 2016:6034-6042.
[15] Bucher M, Herbin S, Jurie F. Improving semantic embedding consistency by metric learning for zero-shot classiffication[C]//European Conference on Computer Vision. Cham:Springer International Publishing, 2016:730-736.
[16] Shigeto Y, Suzuki I, Hara K, et al. Ridge regression, hubness, and zero-shot learning[C]//The European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin, German:Springer, 2015:135-151.
[17] Ba J L, Swersky K, Fidler S, et al. Predicting deep zero-shot convolutional neural networks using textual descriptions[C]//IEEE International Conference on Computer Vision.[S. l.]:IEEE Computer Society, 2015:4247-4255.
[18] Norouzi M, Mikolov T, Bengio S, et al. Zero-shotlearning by convex combination of semantic embeddings[EB/OL]. 2013. http://arxiv.org/abs/1312.5650.
[19] Fu Z, Xiang T A, Kodirov E, et al. Zero-shot object recognition by semantic manifold distance[C]//Computer Vision and Pattern Recognition.[S. l.]:IEEE, 2015:2635-2644.
[20] Fu Y, Sigal L. Semi-supervised vocabulary-informed learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:5337-5346. |