北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2017, Vol. 40 ›› Issue (2): 110-114.doi: 10.13190/j.jbupt.2017.02.019

• 研究报告 • 上一篇    

基于KL散度的用户相似性协同过滤算法

王永, 邓江洲   

  1. 重庆邮电大学 电子商务与现代物流重点实验室, 重庆 400065
  • 收稿日期:2016-11-16 出版日期:2017-04-28 发布日期:2017-04-26
  • 作者简介:王永(1977-),男,教授,E-mail:wangyong_cqupt@163.com.
  • 基金资助:
    国家自然科学基金项目(61472464);国家社会科学基金项目(14CTQ026);重庆市自然科学基金项目(cstc2015jcyjA10081)

User Similarity Collaborative Filtering Algorithm Based on KL Divergence

WANG Yong, DENG Jiang-zhou   

  1. Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • Received:2016-11-16 Online:2017-04-28 Published:2017-04-26

摘要: 大多数用户相似性算法在计算用户相似性时只考虑了用户间的共同评分项,而忽略了用户其他评分中可能隐藏的有价值信息.为了准确评估用户间的相似性,提出了一种基于KL散度的用户相似性协同过滤算法.该算法不仅利用了共同评分项,还考虑了其他非共同评分信息的影响.该算法充分利用了用户的所有评分信息,提高了用户相似性度量的可靠性和准确性.实验结果表明,该算法优于当前主流的用户相似性算法,且在没有共同评分信息的条件下,仍能有效地完成用户相似性度量,解决了对共同评分项的完全依赖问题,具有更好的适应性.

关键词: 协同过滤算法, 用户相似性, KL散度, 共同评分信息, 数据稀疏

Abstract: User similarity based collaborative filtering algorithm is one of most widely used technologies. Most of user similarity algorithms only consider the co-rated items between two users, but ignore other ratings that probably hide valuable information. To evaluate user similarity accurately, a user similarity collaborative filtering algorithm based on Kullback-Leibles (KL) divergence was proposed. The proposed algorithm utilizes both the co-rated items and the influence of other no co-rated items. Since the algorithm makes full use of all rating information, it improves the accuracy and reliability of user similarity. Experiments show that the proposed algorithm outperforms other user similarities. Moreover, it can still measure the user similarity effectively, even if no co-rated items exist. Therefore, the presented algorithm solves the problem of full dependence on co-rated items and gains better flexibility.

Key words: collaborative filtering algorithm, user similarity, Kullback-Leibles divergence, co-rated information, data sparseness

中图分类号: