北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (1): 29-34.doi: 10.13190/j.jbupt.2016.01.005

• 论文 • 上一篇    下一篇

协同过滤中有影响力近邻的选择

杨恒宇1, 李慧宗2, 林耀进3, 张佳3   

  1. 1. 合肥工业大学计算机与信息学院, 合肥 232009;
    2. 安徽理工大学经济与管理学院, 安徽淮南 232001;
    3. 闽南师范大学计算机学院, 福建漳州 363000
  • 收稿日期:2015-04-10 出版日期:2016-02-28 发布日期:2016-01-29
  • 作者简介:杨恒宇(1973-),男,博士生;李慧宗(1979-),男,副教授,E-mail:lihz_aust@sina.com.
  • 基金资助:

    国家自然科学基金项目(61273292,61303131,51474007);教育部人文社会科学研究青年基金项目(13YJCZH077);福建省高校新世纪优秀人才支持计划项目

Influential Neighbor Selection in Collaborative Filtering

YANG Heng-yu1, LI Hui-zong2, LIN Yao-jin3, ZHANG Jia3   

  1. 1. School of Computer and Information, Hefei University of Technology, Hefei 232009, China;
    2. School of Economics and Management, Anhui University of Science and Technology, Anhui Huainan 232001, China;
    3. School of Computer Science, Minnan Normal University, Fujian Zhangzhou 363000, China
  • Received:2015-04-10 Online:2016-02-28 Published:2016-01-29

摘要:

数据稀疏性制约着协同过滤的推荐性能,为此,首先根据用户评分数量定义了用户的影响因子,在计算用户之间的相似性时,增加了影响因子衡量用户关系;其次,根据用户评分质量定义了有影响力用户群体.在此基础上,结合用户的评分数量和评分质量,使选择的有影响力近邻最大程度上作用于推荐过程.实验结果表明,所提方法能显著提高推荐性能.

关键词: 协同过滤, 有影响力近邻, 评分数量, 评分质量, 数据稀疏性

Abstract:

The recommendation performance of collaborative filtering is restricted by data sparsity. To solve this problem, the factor of user influence was thereafter defined according to the number of ratings to measure the relationship while calculating the similarity between users. Then, the influential user group was introduced according to the rating quality. On this basis, the chosen influential neighbor can work on the process of recommendations via combining the number of user ratings with the rating quality. Experiments show that the proposed method can significantly improve the recommendation performance.

Key words: collaborative filtering, influential neighbor, number of ratings, rating quality, data sparsity

中图分类号: