北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (3): 94-98.doi: 10.13190/j.jbupt.2015.03.015

• 论文 • 上一篇    下一篇

卫星移动终端增强型卡尔曼滤波协同自主定位算法

何异舟1,2, 崔高峰1, 李鹏旭1, 王程1, 王卫东1   

  1. 1. 北京邮电大学 电子工程学院, 北京 100876;
    2. 通信网信息传输与分发技术重点实验室, 石家庄 050081
  • 收稿日期:2015-02-11 出版日期:2015-06-28 发布日期:2015-06-28
  • 作者简介:何异舟(1988—), 男, 博士生, E-mail: hyz88720@bupt.edu.cn; 王卫东(1967—), 男, 教授, 博士生导师.
  • 基金资助:

    国家自然科学基金项目(91438114);通信网信息传输与分发技术重点实验室开放课题项目(ITD-U13007/KX132600014)

A Satellite Mobile Terminals Cooperative Autonomous Positioning Algorithm Based on Enhanced Kalman Filter

HE Yi-zhou1,2, CUI Gao-feng1, LI Peng-xu1, WANG Cheng1, WANG Wei-dong1   

  1. 1. The School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. The Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory, Shijiazhuang 050081, China
  • Received:2015-02-11 Online:2015-06-28 Published:2015-06-28

摘要:

针对单星、多终端协作定位,提出了一种基于卡尔曼滤波的静止轨道卫星移动终端协同自主定位算法. 利用同波束内的未定位移动终端进行信令交互,获取卫星与波束中心参数进行最小二乘粗估计,再采用卡尔曼滤波对粗估计坐标二次优化. 仿真结果表明,基于卡尔曼滤波的静止轨道卫星移动终端协同自主定位算法可在单星场景下实现较精确的终端定位,且在协作终端数量增加时能降低定位误差的波动范围,提高定位稳定性.

关键词: 卫星移动通信, 终端协同, 位置估计, 卡尔曼滤波

Abstract:

In order to improve satellite mobile communication system's capability to carry out independent and accurate location, a satellite mobile terminals cooperative autonomous positioning algorithm based on Kalman filter(K-ACT) is proposed. Utilize unlocated user terminals in the same beam to execute signal interaction, acquire center parameters of satellites and beams through satellite broadcasting channel, and carry out Kalman filter optimization to finalize accurate coordinates. The result of simulation suggests that K-ACT algorithm is capable of realizing relatively accurate user terminal location, and fluctuation of location decreases as the number of assistant user terminals increases, resulting in higher stability of location.

Key words: mobile satellite communications, terminal cooperation, location estimate, Kalman filter

中图分类号: