北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2016, Vol. 39 ›› Issue (5): 67-71,88.doi: 10.13190/j.jbupt.2016.05.014

• 研究报告 • 上一篇    下一篇

基于改进APIT的移动机器人动态定位

冯晟, 吴成东, 张云洲   

  1. 东北大学 信息科学与工程学院, 沈阳 110819
  • 收稿日期:2016-06-12 出版日期:2016-10-28 发布日期:2016-12-02
  • 作者简介:冯晟(1979-),男,博士生,E-mail:fengsheng_13@aliyun.com;吴成东(1960-),男,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61273078,61471110)

Dynamic Localization of Mobile Robot Based on Improved APIT

FENG Sheng, WU Cheng-dong, ZHANG Yun-zhou   

  1. School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2016-06-12 Online:2016-10-28 Published:2016-12-02

摘要: 针对室内无线传感器网络通信传输不稳定和定位精度较差的情况,提出了一种移动机器人自主动态定位系统,通过实时选择邻近信标节点,确定节点坐标构成的边界,绘制局部网格空间,实现机器人动态定位.利用接收信号强度指标实现测距,然后采用基于测距的改进近似三角形内点测试(APIT)算法完成定位,再使用卡尔曼算法修正定位误差.该方法适用于室内网络传输不稳定的实际情况,采用卡尔曼滤波器获得最优数据.实验结果表明,该移动机器人自主动态定位方法比基于网格的极大似然方法具有更好的精度和适应性.

关键词: 无线传感器网络, 动态定位, 卡尔曼滤波算法, 接收信号强度指标

Abstract: According to the communication instability and poor localization accuracy in indoor wireless sensor networks, a dynamic localization of mobile robot was proposed which dynamically chooses neighbor beacon nodes and establish grid space based on boundary of beacon node location in real time. This method applies the receive signal strength index for distance measurement. Furthermore, the range-based improved approximate point in triangle test (APIT) was used to realize the localization. Finally, the localization error-correct is implemented by the classical Kalman filter. The method is adaptable for the communication instability of indoor wireless sensor networks, the Kalman filter provides optimal data. Experiments show that the accuracy and adaptability of the dynamic localization of the mobile robot are better than Kalman filter grid-based improved maximum likelihood estimation algorithm.

Key words: wireless sensor networks, dynamic localization, Kalman filter algorithm, receive signal strength index

中图分类号: