北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (2): 65-71.doi: 10.13190/j.jbupt.2021-145

• 论文 • 上一篇    下一篇

MEC计算卸载与资源分配联合智能优化方案

杜梅1, 周军华2, 李敦桥3, 陈士钊4, 魏翼飞1   

  1. 1. 北京邮电大学 电子工程学院, 北京 100876;
    2. 北京市复杂产品先进制造工程研究中心 北京市仿真中心, 北京 100854;
    3. 贵州航天控制技术有限公司, 贵阳 550009;
    4. 宁波中湾科技有限公司, 宁波 315400
  • 收稿日期:2021-07-21 发布日期:2021-12-16
  • 作者简介:杜梅(1996—),女,硕士生,邮箱:dmxy54210383@163.com;魏翼飞(1983—),男,教授。
  • 基金资助:
    国家自然科学基金项目(61871058)

A Joint Intelligent Optimization Scheme of Computation Offloading and Resource Allocation for MEC

DU Mei1, ZHOU Junhua2, LI Dunqiao3, CHEN Shizhao4, WEI Yifei1   

  1. 1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Beijing Simulation Center, Beijing Advanced Manufacturing Engineering Research Center for Complex Products, Beijing 100854, China;
    3. Guizhou Aerospace Control Technology Limited Company, Guiyang 550009, China;
    4. Ningbo Zhongwan Technology Limited Company, Ningbo 315400, China
  • Received:2021-07-21 Published:2021-12-16

摘要: 移动边缘计算(MEC)中的分布式基站部署、有限的服务器资源和动态变化的终端用户使得计算卸载方案的设计极具挑战。鉴于深度强化学习在处理动态复杂问题方面的优势,设计了最优的计算卸载和资源分配策略,目的是最小化系统能耗。首先考虑了云边端协同的网络框架;然后将联合计算卸载和资源分配问题定义为一个马尔可夫决策过程,提出一种基于多智能体深度确定性策略梯度的学习算法,以最小化系统能耗。仿真结果表明,该算法在降低系统能耗方面的表现明显优于深度确定性策略梯度算法和全部卸载策略。

关键词: 移动边缘计算, 计算卸载, 资源分配, 多智能体强化学习

Abstract: Due to the distributed base station deployment, limited server resources and dynamic end-users in mobile edge computing (MEC), the design of computation offloading scheme is extremely challenging. Since the deep reinforcement learning has advantages in terms of dealing with dynamic complex problems, we design the optimal computation offloading and resource allocation strategies based on deep reinforcement learning to minimize the system energy consumption. First, the network framework of cloud edge-end collaboration is considered. Then, the joint computation offloading and resource allocation problem is defined as a Markov decision process.Next, a multi-agent deep deterministic policy gradient-based learning algorithm is proposed to minimize the system energy consumption. The experimental results show that our proposed scheme significantly reduces the energy consumption compared to the deep deterministic policy gradient-based algorithm and the full offloading policy.

Key words: mobile edge computing, computation offloading, resource allocation, multi-agent reinforcement learning

中图分类号: