北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (2): 72-78.doi: 10.13190/j.jbupt.2021-142

• 论文 • 上一篇    下一篇

一种路网级交通事故风险预测方法

宁静1, 佘红艳2, 赵东1, 罗丹1, 王磊3   

  1. 1. 北京邮电大学 智能通信软件与多媒体北京市重点实验室, 北京 100876;
    2. 华录易云科技有限公司, 南京 210000;
    3. 山东省泰安市公安局 交通警察支队, 泰安 271000
  • 收稿日期:2021-07-20 发布日期:2021-12-16
  • 通讯作者: 佘红艳(1968—),女,工程师,邮箱:shehy@yyits.cn。 E-mail:shehy@yyits.cn
  • 作者简介:宁静(1998—),女,硕士生。
  • 基金资助:
    科技创新2030-"新一代人工智能"重大项目(2018AAA0101201);国家自然科学基金项目(61972044);北京邮电大学提升科技创新能力行动计划项目(2020XD-A09-3)

A Road-Level Traffic Accident Risk Prediction Method

NING Jing1, SHE Hongyan2, ZHAO Dong1, LUO Dan1, WANG Lei3   

  1. 1. Beijing Key Laboratory of Intelligent Communication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Hualu Yiyun Technology Company of Limited, Nanjing 210000, China;
    3. Traffic Police Detachment, Tai'an Public Security Bureau of Shandong Province, Tai'an 271000, China
  • Received:2021-07-20 Published:2021-12-16

摘要: 现有的深度学习方法将空间区域网格化,不符合事故发生的自然形态。考虑到交通事故大多发生在道路上,为了在空间维度上更精准地完成事故风险预测任务,针对路段级别的事故风险预测问题,提出了一种融合尺度缩减注意力机制和图卷积网络的城市交通事故风险预测(SA-GCN)模型。首先,有效结合历史长期和短期事故风险、外部天气特征,采用门控图卷积模块捕获时空相关性,并使用注意力机制以获得不同时空特征的动态性表达;其次,针对事故数据的稀疏性和空间异质性问题,引入了尺度缩减模块,以聚类后粗粒度区域的事故风险引导路段级别的事故风险预测。在公开性能测量系统数据集上的实验结果表明,SA-GCN模型优于其他6种基准模型,并且比现有最新模型的准确率提升了11%。

关键词: 图卷积, 注意力机制, 交通事故风险预测

Abstract: Existing deep-learning-based methods always divide the predicted region into grids which does not conform to the natural form of accidents,while accidents generally occur on roads. Aiming at the problem of road-level accident risk prediction, an urban traffic accident risk prediction model scale-reduced attention based on graph convolution network (SA-GCN) is proposed. First, the model effectively combines historical long-term and short-term risks, external weather features and a gated graph convolution structure to capture spatial-temporal correlations, and then an attention mechanism is applied to obtain dynamic representations of spatial-temporal features. After that, to solve the problem of the sparseness and spatial heterogeneity of accident data, a scale reduction module which uses the accident risk of the coarse-grained area after clustering, is designed to guide the accident risk prediction at road level. Experimental results on real traffic datasets performance measurement system show that the SA-GCN model performs better than six baseline models, and achieves 11% higher prediction accuracy than the state-of-the-art model.

Key words: graph convolution, attention mechanism, traffic accident risk forecasting

中图分类号: