北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2020, Vol. 43 ›› Issue (3): 38-44.doi: 10.13190/j.jbupt.2019-127

• 论文 • 上一篇    下一篇

基于改进CNN的阀门泄漏超声信号识别方法

宁方立1,2, 韩鹏程1,2, 段爽1,2, 李航1,2, 韦娟3   

  1. 1. 西北工业大学 机电学院, 西安 710072;
    2. 东莞市三航军民融合创新研究院, 东莞 523808;
    3. 西安电子科技大学 通信工程学院, 西安 710071
  • 收稿日期:2019-07-01 出版日期:2020-06-28 发布日期:2020-06-24
  • 作者简介:宁方立(1974-),男,教授,博士生导师,E-mail:ningfl@nwpu.edu.cn.
  • 基金资助:
    国家自然科学基金项目(51675425);陕西省重点研发计划项目(2020ZDLGY06-09);2018年东莞市社会科技发展(重点)项目(20185071021600)

Identification Method of Valve Leakage Ultrasonic Signal Based on Improved CNN

NING Fang-li1,2, HAN Peng-cheng1,2, DUAN Shuang1,2, LI Hang1,2, WEI Juan3   

  1. 1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Dongguan Sanhang Civil-military Integration Innovation Institute, Dongguan 523808, China;
    3. School of Telecommunications Engineering, Xidian University, Xi'an 710071, China
  • Received:2019-07-01 Online:2020-06-28 Published:2020-06-24
  • Supported by:
     

摘要: 为了检测输气管道阀门泄漏,对改进AlexNet网络结构进行了研究,提出了基于改进卷积神经网络(CNN)的阀门泄漏超声信号识别方法.针对泄漏信号短时稳定的窄带线谱特征,从图像邻域信息密度角度出发,将卷积核形状由图像识别领域通常使用的"正方形"改进为"扁横状".同时,对AlexNet层数进行优化,重新确定卷积核和全连接层神经元数目,并选择小尺寸卷积核,在减少参数量的同时增加网络容量和模型复杂度,防止模型出现过拟合.分别建立二分类和不同泄漏量下的多分类模型,通过输气管道实验平台采集阀门泄漏数据集,生成对应时频图样本,包括不同阀门开度、不同管道压力下的泄漏及背景声信号.结果表明,对比传统的CNN分类模型,改进CNN分类模型在测试集上取得了更高的识别性能.

关键词: 卷积核, 短时傅里叶变换, 卷积神经网络, 阀门, 泄漏检测

Abstract: In order to detect valve leakage in gas pipelines, an improved AlexNet network architecture is studied, an ultrasonic signal recognition method for valve leakage based on an improved convolutional neural network (CNN) is proposed. Due to short-term and narrow-band line spectrum features of the leakage signals, the "square" convolution kernel, commonly used in image recognition, is changed to "flat" based on the perspective of image neighborhood information density. At the same time, the AlexNet layers are optimized, the number of convolution kernel and neurons in the fully connected layers are re-determined, and the small-scale convolution kernel is selected to increase the network capacity and model complexity while reducing the number of parameters to prevent model overfitting. The two-class and multi-class models with different leakages are established respectively, and the data set is collected through experiments to generate corresponding time-frequency diagram samples as well, including leakage signals at different valve openings and pipeline pressures and background acoustic signals. It is shown that the improved CNN classifier achieves higher recognition performance on the test set than the traditional CNN classifier.

Key words: convolution kernel, short-time Fourier transform, convolutional neural network, valve, leakage detection

中图分类号: