[1] Murvay P S, Silea I. A survey on gas leak detection and localization techniques[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(6):966-973.
[2] Sheltami T R, Bala A, Shakshuki E M. Wireless sensor networks for leak detection in pipelines:a survey[J]. Journal of Ambient Intelligence and Humanized Computing, 2016, 7(3):347-356.
[3] Liu Cuiwei, Li Yuxing, Yan Yukun, et al. A new leak location method based on leakage acoustic waves for oil and gas pipelines[J]. Journal of Loss Prevention in the Process Industries, 2015, 35:236-246.
[4] 刘翠伟, 李雪洁, 李玉星, 等. 基于音波法的输气管道泄漏检测与定位[J]. 化工学报, 2014, 65(11):4633-4642. Liu Cuiwei, Li Xuejie, Li Yuxing, et al. Leak detection and location for natural gas pipelines based on acoustic waves[J]. Journal of Chemical Industry and Engineering, 2014, 65(11):4633-4642.
[5] Liao Pingping, Cai Maolin. Study on compressed air leak detection using ultrasonic detection technology and instrument[C]//Conference on Industrial Electronics and Applications. Beijing:IEEE, 2011:1690-1693.
[6] Zhou F, Jin L, Dong J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251.
[7] Lu Chen, Zhou Bo, Wang Zhenya. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics, 2017, 32(2):139-151.
[8] Krizhevsky A, Sutskever I, Hinton G E, et al. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[9] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//Computer Vision and Pattern Recognition. Columbus:[s.n.], 2014:1-14.
[10] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]//Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:2818-2826.
[11] Nair V, Hinton G E. Rectified linear units improve restricted boltzmann machines[C]//International Conference on Machine Learning. Haifa:[s.n.], 2010:807-814.
[12] Boureau Y, Ponce J, Lecun Y, et al. A theoretical analysis of feature pooling in visual recognition[C]//International Conference on Machine learning. Haifa:[s.n.], 2010:111-118. |