[1] Ludewig M, Jannach D. Evaluation of session-based recommendation algorithms[J]. User Modeling and User-Adapted Interaction, 2018, 28(4-5):331-390.
[2] Barkan O, Koenigstein N. Item2vec:neural item embedding for collaborative filtering[C]//MLSP. Salerno:IEEE, 2016:1-6.
[3] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint arXiv:1511. 06939, 2015.
[4] Hidasi B, Karatzoglou A. Recurrent neural networks with top-k gains for session-based recommendations[C]//Conference on Information and Knowledge Management (CIKM). Turin:ACM, 2018:843-852.
[5] Zhao W, Wang B, Ye J, et al. Plastic:prioritize long and short-term information in top-n recommendation using adversarial training[C]//IJCAI. Stockholm:IJCAI Organization, 2018:3676-3682.
[6] Quadrana M, Karatzoglou A, Hidasi B, et al. Personalizing session-based recommendations with hierarchical recurrent neural networks[C]//Proceedings of the 11th ACM Conference on Recommender Systems-RecSys'17. New York:ACM Press, 2017:130-137.
[7] Sarwar B M, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web-WWW'01. New York:ACM Press, 2001:285-295.
[8] Jannach D, Ludewig M. When recurrent neural networks meet the neighborhood for session-based recommendation[C]//Proceedings of the 11th ACM Conference on Recommender Systems-RecSys'17. New York:ACM Press, 2017:306-310.
[9] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv preprint arXiv:1406. 1078, 2014.
[10] Qu Yanru, Cai Han, Ren Kan, et al. Product-based neural networks for user response prediction[C]//2016 IEEE 16th International Conference on Data Mining (ICDM). Piscataway:IEEE Press, 2016:1149-1154.
[11] Rendle S, Freudenthaler C, Gantner Z, et al. Bpr:bayesian personalized ranking from implicit feedback[C]//UAI. Montreal:AUAI Press, 2009:452-461. |