北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (6): 142-148.doi: 10.13190/j.jbupt.2019-143

• 研究报告 • 上一篇    下一篇

面向会话型推荐系统的个性化分层循环模型

王雅青, 郭彩丽, 楚云霏, 周洪弘, 冯春燕   

  1. 1. 北京邮电大学 信息与通信工程学院, 北京 100876;
    2. 北京邮电大学 先进信息网络北京实验室, 北京 100876
  • 收稿日期:2019-07-09 出版日期:2019-12-28 发布日期:2019-11-15
  • 通讯作者: 郭彩丽(1977-),女,教授,博士生导师,E-mail:guocaili@bupt.edu.cn. E-mail:guocaili@bupt.edu.cn
  • 作者简介:王雅青(1990-),女,博士生.
  • 基金资助:
    国家重点研发计划项目(2018YFB1800805)

Personalized Hierarchical Recurrent Model for Session-Based Recommendation Systems

WANG Ya-qing, GUO Cai-li, CHU Yun-fei, ZHOU Hong-hong, FENG Chun-yan   

  1. 1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2019-07-09 Online:2019-12-28 Published:2019-11-15

摘要: 为了精准地捕捉用户行为模式,引入中期兴趣的概念,提出一个基于循环神经网络(RNN)的个性化分层循环模型,通过在同一框架下联合利用用户的会话、区块和全部行为序列来学习用户的综合兴趣.利用一个捕捉会话内序列模式的会话级RNN建模用户的短期兴趣;设计了一个捕捉区块内相邻会话关联关系的区块级RNN,进一步描述用户的中期兴趣;使用一个用户级RNN追踪长期兴趣的演化;引入带有不同交互机制的融合层,以有效融合不同层次的兴趣信息.在3个真实数据集上进行实验,结果表明,该方法与先进的推荐方法相比,Recall@10提升了18.35%.

关键词: 会话型推荐系统, 循环神经网络, 个性化推荐

Abstract: The existing studies of session-based recommendations mainly focus on the short-term and long-term interests of users. In order to accurately depict behavior patterns of users, the author introduces the medium-term interests and proposes personalized hierarchical recurrent model (PHRM) based on recurrent neural networks (RNNs), to learn a comprehensive description of user interests by jointly leveraging session, block and global behaviors in a unified framework. First, to model short-term interests, a session-level RNN is designed to capture sequential patterns in sessions. Next, to further describe medium-term interests, a block-level RNN is added to capture correlations across sessions in a block. Then, a user-level RNN is devised to track evolution of long-term interests. Finally, the article designs fusion layers with different interaction mechanisms to effectively integrate cross-level interest information. Simulations on three real-world datasets show that PHRM outperforms the state-of-the-art recommendation methods, with Recall@10 increasing by 18.35%.

Key words: session-based recommendation systems, recurrent neural networks, personalized recommendations

中图分类号: