北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (5): 101-106.doi: 10.13190/j.jbupt.2020-255

• 研究报告 • 上一篇    下一篇

一种多视角高精度图片的深度估计方法

李剑, 陈宇航   

  1. 北京邮电大学 人工智能学院, 北京 100876
  • 收稿日期:2020-12-01 出版日期:2021-10-28 发布日期:2021-09-06
  • 作者简介:李剑(1976-),男,教授,博士生导师,E-mail:lijian@bupt.edu.cn.
  • 基金资助:
    国家自然科学基金项目(U1636106);北京市自然科学基金项目(4182006)

A Depth Estimation Method for Multi View and High Precision Images

LI Jian, CHEN Yu-hang   

  1. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2020-12-01 Online:2021-10-28 Published:2021-09-06

摘要: 针对多视图的重建中高精度图片难以有效重建的问题,提出了基于学习的深度估计方法.该方法利用空洞卷积神经网络对图片进行特征提取,利用长短期记忆网络构建并优化三维代价体,并且采取有监督和无监督2种方式进行训练.在2个真实场景中的多视角图片数据集上的实验结果表明,相比于传统方法和其他基于学习的方法,该网络所需的显存大大减少,因此能用于高精度图片的重建,同时,提高了模型深度预测的准确性和完整性.

关键词: 多视图重建, 循环神经网络, 高精度图片

Abstract: High-precision images are challenging to reconstruct effectively in dense multi view reconstruction. To solve the problem, a learning-based depth estimation method is proposed. In the method,the dilated convolution neural network is used to extract image features,and the long short-term memory network is applied to construct and optimize the cost volume. Besides,the supervised and unsupervised training methods are adopted. Experimental results on two real scene multi view image datasets show that the proposed method not only outperforms state-of-the-arts methods,but also is several times less in GPU memory application compared with traditional methods and other learning-based methods. Therefore, the proposed method can reconstuct high-precision images, while improving the accuracy and integrity of model depth prediction.

Key words: multi view reconstruction, recursive neural network, high-precision images

中图分类号: