[1] Agarwal S, Kodialam M, Lakshman T V. Traffic engineering in software defined networks[C]//2013 Proceedings IEEE INFOCOM. Turin, Italy:IEEE Press, 2013:2211-2219.
[2] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587):484-489.
[3] Mestres A, Hibbett M J, Estrada G, et al. Knowledge-defined networking[J]. ACM SIGCOMM Computer Communication Review, 2017, 47(3):2-10.
[4] Chavula J, Densmore M, Suleman H. Using SDN and reinforcement learning for traffic engineering in UbuntuNet Alliance[C]//2016 International Conference on Advances in Computing and Communication Engineering (ICACCE). Durban, South Africa:IEEE Press, 2016:349-355.
[5] Xu Zhiyuan, Tang Jian, Meng Jingsong, et al. Experience-driven networking:a deep reinforcement learning based approach[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Honolulu, USA:IEEE Press, 2018:1871-1879.
[6] Sutton R S, Barto A G. Reinforcement learning:an introduction[M]. Cambrige:MIT Press, 1998.
[7] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[EB/OL]. 2013(2013-12-19)[2019-07-05]. https://arxiv.org/pdf/1312.5602.pdf.
[8] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[C]//Advances in Neural Information Processing Systems. Long Beach, USA:Curran Associates, 2017:486-496.
[9] Lowe R, Wu Y, Tamar A, et al. Multi-agent-actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems. Long Beach, USA:Curran Associates, 2017:6379-6390.
[10] Winstein K, Balakrishnan H. Tcp ex machina:Computer-generated congestion control[C]//ACM SIGCOMM 2013. Hong Kong, China:ACM Press, 2013:123-134.
[11] 张峰, 李刚, 宋丽. 一种适应网络拥塞的网络端到端时延估算模型[J]. 空军雷达学院学报, 2009, 23(3):190-193. Zhang Feng, Li Gang, Song Li. An estimation model of end-to-end delay of network congestion[J]. Journal of Air Force Radar Academy, 2009, 23(3):190-193. |