北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (6): 49-57.doi: 10.13190/j.jbupt.2019-180

• 论文 • 上一篇    下一篇

基于深度学习的OBD端口占用状态自动识别算法

苏东, 余宁梅   

  1. 西安理工大学 自动化与信息工程学院, 西安 710048
  • 收稿日期:2019-09-03 出版日期:2019-12-28 发布日期:2019-11-15
  • 通讯作者: 余宁梅(1963-),女,教授,博士生导师,E-mail:yunm@xaut.edu.cn. E-mail:yunm@xaut.edu.cn
  • 作者简介:苏东(1979-),男,硕士生.

Research on Automatic Recognition Algorithm of OBD Port Occupancy State Based on Deep Learning

SU Dong, YU Ning-mei   

  1. School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received:2019-09-03 Online:2019-12-28 Published:2019-11-15

摘要: 针对光分路器(OBD)端口占用状态不能自动采集的问题,提出了一种改进型YOLOv3算法.增加第4个上采样特征图,提升高分辨率下密集小物体检测敏感度;针对端口固定高宽比特征,利用k-means聚类算法重新确定目标候选框个数和高宽比;提出软非极大值抑制算法,缓解端口靠近且被遮挡情况下引起的漏检、误检;针对4种疑难生产场景下的端口占用状态完成检测.实验结果表明,改进后的YOLOv3准确率达90.12%,相比原YOLOv3提升了5.17%.改进后的算法对于端口类物体具有更高的检测准确率.

关键词: 光分路器, YOLOv3, 聚类算法, 软非极大值抑制, 特征图

Abstract: Because that optical branching device (OBD) port occupancy state can not be automatically acquired, an improved YOLOv3 algorithm was proposed. Firstly, by adding the fourth upsampling feature map, the detection sensitivity of dense small objects at high resolution is increased. Secondly, for characteristics of the fixed height-width ratio of port, the k-means clustering algorithm is used to re-determine the number of target candidate boxes and the height-width ratio. Thirdly, the soft non-maximum suppression algorithm is proposed to alleviate the missed detection and false detection caused by the proximity and occlusion of the port. Finally, four difficult production scenario in the port occupancy state is detected to verify the performance of the improved YOLOv3 algorithm. Experiments show that the accuracy of the improved YOLOv3 is 90.12%, 5.17% higher than the original YOLOv3. In conclusion, the improved algorithm has higher detection accuracy for port-like objects.

Key words: optical branching device, YOLOv3, clustering algorithm, soft non-maximum suppression, feature map

中图分类号: