[1] Ji Zhenyan, Yao Weina, Wei Wei, et al. Deep multi-level semantic hashing for cross-modal retrieval[J]. IEEE Access, 2019, 7:23667-23674.
[2] Dziugaite G K, Roy D M. Neural network matrix factorization[J]. Computer Science, 2015, arXiv:1511. 06443.
[3] He Xiangnan, Liao Lizi, Zhang Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web-WWW'17. New York:ACM Press, 2017:173-182.
[4] Li Sheng, Jaya Kawale, Fu Yun. Deep collaborative filtering via marginalized denoising auto-encoder[C]//CIKM. New York:ACM Press, 2015:811-820.
[5] Zheng Yin, Tang Bangsheng, Ding Wenkui, et al. A neural autoregressive approach to collaborative filtering[C]//ICML. New York:ACM Press, 2016:764-773.
[6] Elkahky A M, Song Yanag, He Xiaodong. A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web-WWW'15. New York:ACM Press, 2015:278-288.
[7] Zheng Lei, Noroozi Vahid, Yu Philip. Joint deep modeling of users and items using reviews for recommendation[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining-WSDM'17. New York:ACM Press, 2017:425-434.
[8] Shen Xiaoxuan, Yi Baolin, Zhang Zhaoli, et al. Automatic recommendation technology for learning resources with convolutional neural network[C]//2016 International Symposium on Educational Technology (ISET). New York:IEEE Press, 2016:30-34.
[9] Ji Zhenyan, Pi Huaiyu, Wei Wei, et al. Recommendation based on review texts and social communities:a hybrid model[J]. IEEE Access, 2019, 7:40416-40427.
[10] Rendle Steffen, Freudenthaler Christoph, Gantner Zeno, et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Conference on Uncertainty in Artificial Intelligence. Arlington, Virginia:AUAI Press, 2009:452-461.
[11] Tom Griffiths, Gibbs sampling in the generative model of latent dirichlet allocation[EB/OL]. 2002[2019-09-16]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.3760.
[12] Takács, Gábor, Tikk D. Alternating least squares for personalized ranking[C]//Proceedings of the 6th ACM conference on Recommender systems RecSys'12. New York:ACM Press, 2012:83-90.
[13] Zhang Yongfeng, Ai Qingyao, Chen Xu, et al. Joint representation learning for top-n recommendation with heterogenous information sources[C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management-CIKM'17. New York:ACM Press, 2017:1449-1458. |