北京邮电大学学报 ›› 2018, Vol. 41 ›› Issue (5): 1-12.doi: 10.13190/j.jbupt.2018-185
• 综述 • 下一篇
面向5G的定位技术研究综述
张平, 陈昊
- 北京邮电大学 网络与交换技术国家重点实验室, 北京 100876
-
收稿日期:
2018-08-09出版日期:
2018-10-28发布日期:
2018-11-20 -
作者简介:
张平(1959-),男,教授,博士生导师,E-mail:pzhang@bupt.edu.cn;陈昊(1983-),男,博士研究生. -
基金资助:
A Survey of Positioning Technology for 5G
ZHANG Ping, CHEN Hao
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
Received:
2018-08-09Online:
2018-10-28Published:
2018-11-20 -
Supported by:
摘要: 连续广域覆盖、热点高容量、低功耗大连接和低时延高可靠是第5代移动通信系统(5G)四大主要技术场景.移动台的位置信息不仅是新业务的需求,更能有效应对5G新业务在流量密度、连接数量、超低时延、高可靠性、高移动性上面临的挑战.针对面向5G的定位技术研究展开综述,并对定位技术涉及的主要方向进行了分析;从5G主要技术场景的需求分析入手,介绍了现有定位技术面向5G需求的研究进展;通过对定位技术的分类,归纳总结了有助于定位的5G技术;分析了5G移动台定位面临的挑战,给出了未来的研究方向.
中图分类号:
引用本文
张平, 陈昊. 面向5G的定位技术研究综述[J]. 北京邮电大学学报, 2018, 41(5): 1-12.
ZHANG Ping, CHEN Hao. A Survey of Positioning Technology for 5G[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(5): 1-12.
[1] IMT-2020. 5G概念白皮书[EB/OL]. 北京:IMT-2020工作组, 2015[2018-08-01]. [2] 5G-PPP. 5G automotive vision[EB/OL]. Belgium:5G Infrastructure Association, 2015[2018-08-01]. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf. [3] NGMN Alliance. 5G white paper[EB/OL]. Frankfurt:MGMN Alliance, 2015[2018-08-01]. https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/2015/NGMN_5G_White_Paper_V1_0.pdf. [4] Biswas P, Ye Y. Semidefinite programming for Ad hoc wireless sensor network localization[C]//Proc 3rd Int Symp Inf Process. Sensor Netw. New York:ACM, 2004:46-54. [5] So A M, Ye Y. Theory of semidefinite programming for sensor network localization[J]. Symposium on Discrete Algorithms, 2005, 109(2):367-384. [6] Tseng P. Second-order cone programming relaxation of sensor network localization[J]. Siam Journal on Optimization, 2007, 18(1):156-185. [7] Jia T, Buehrer R M. A set-theoretic approach to collaborative position location for wireless networks[J]. IEEE Trans Mobile Comput, 2011, 10(9):1264-1275. [8] He S, Dong X. High-accuracy localization platform using asynchronous time difference of arrival technology[J]. IEEE Trans Instrum Meas, 2017, 66(7):1728-1742. [9] Huang B, Xie L, Yang Z. TDOA-based source localization with distance-dependent noises [J]. IEEE Trans Wireless Commun, 2015, 14(1):468-480. [10] Jean O, Weiss A J. Passive localization and synchronization using arbitrary signals [J]. IEEE Trans Signal Process, 2014, 62(8):2143-2150. [11] Rahdar R, Stracener J T, Olinick E V. A systems engineering approach to improving the accuracy of mobile station location estimation[J]. IEEE Syst J, 2014, 8(1):14-22. [12] Liu D, Lee M, Pun C, et al. Analysis of wireless localization in nonline-of-sight conditions[J]. IEEE Trans Veh Technol, 2013, 62(4):1484-1492. [13] Su Z, Shao G, Liu H, et al. Semidefinite programming for NLOS error mitigation in TDOA localization[J]. IEEE Commun Letters, 2018, 22(7):1430-1433. [14] Qu X, Xie L, Tan W, et al. Iterative constrained weighted least squares source localization using TDOA and FDOA measurements[J]. IEEE Trans Signal Processing, 2017, 65(15):3990-4003. [15] Peralrosado J A, Lopezsalcedo J A, Secogranados G, et al. Impact of frequency-hopping NB-IoT positioning in 4G and future 5G networks[C]//IEEE ICC Workshops. Paris:IEEE, 2017:815-820. [16] Schmidhammer M, Sand S, Soliman M, et al. 5G signal design for road surveillance[C]//IEEE WPNC. Bremen:IEEE, 2017:1-6. [17] Gerzaguet R, Bartzoudis N G, Baltar L G, et al. The 5G candidate waveform race:a comparison of complexity and performance[J]. Eurasip J Wireless Commun and Netw, 2017, 2017(1):13. [18] Dammann A, Jost T, Raulefs R, et al. Optimizing waveforms for positioning in 5G[C]//IEEE SPAWC'16. Edinburgh, UK:IEEE, 2016:1-5. [19] Staudinger E, Walter M, Dammann A. The 5G localization waveform ranging accuracy over time-dispersive channels-an evaluation[C]//ION GNSS'16. Portland, Oregon:Institute of Navigation, 2016:2271-2280. [20] Han X, Wang J, Shi W, et al. An indoor precise positioning algorithm using 60 GHz millimeter-wave based on the optimal path search[C]//IEEE Globecom Workshops. Singapore:IEEE, 2017:1-5. [21] Abu-Shaban Z, Zhou X, Abhayapala T, et al. Error bounds for uplink and downlink 3D localization in 5G mmWave wystems[J]. IEEE Trans Wireless Commun, 2017(99):10-15. [22] Lemic F, Martin J, Yarp C, et al. Localization as a feature of mmWave communication[C]//IEEE IWCMC. Paphos, Cyprus:IEEE, 2016:1033-1038. [23] Comiter M Z, Crouse M B, Kung H T, et al. A data-driven approach to localization for high frequency wireless mobile networks[C]//IEEE Globecom. Singapore:IEEE, 2017:1-7. [24] Tomic S, Beko M, Dinis R. Distributed RSS-AoA based localization with unknown transmit powers[J]. IEEE Wireless Commun Lett, 2016, 5(4):392-395. [25] Zhang W, Yin Q, Chen H, et al. Distributed angle estimation for localization in wireless sensor networks[J]. IEEE Trans Wireless Commun, 2013, 12(2):527-537. [26] Jiang J R, Lin C M, Lin F Y, et al. ALRD:AoA localization with RSSI differences of directional antennas for wireless sensor networks [J]. Int J Distrib Sensor Netw, 2013, 1:7-14. [27] Xu S, Dogan?ay K. Optimal sensor placement for 3-D angle-of-arrival target localization[J]. IEEE Trans Aerosp Electron Syst, 2017, 53(3):1196-1211. [28] Ma Z, Ho K C. A study on the effects of sensor position error and the placement of calibration emitter for source localization[J]. IEEE Trans Wireless Commun, 2014, 13(10):5440-5452. [29] Schmidt R. Multiple emitter location and signal parameter estimation [J]. IEEE Trans Antennas and Propag, 1986, 34(3):276-280. [30] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans Acoust, Speech, Signal Process, 1989, 37(7):984-995. [31] Garcia N, Wymeersch H, Larsson E G, et al. Direct localization for massive MIMO [J]. IEEE Trans Signal Process, 2017, 65(10):2475-2487. [32] Quitin F, De Doncker P, Horlin F, et al. Virtual multiantenna array for estimating the direction of a transmitter:system, bounds, and experimental results[J]. IEEE Trans Veh Technol, 2018, 67(2):1510-1520. [33] Lin J, Ma X, Yan S, et al. Time-frequency multi-invariance ESPRIT for DOA estimation [J]. IEEE Antennas Wireless Propag Lett, 2016, 15:770-773. [34] Lv T, Tan F, Gao H, et al. A beamspace approach for 2-D localization of incoherently distributed sources in massive MIMO systems[J]. Signal Process, 2016:30-45. [35] Garcia N, Wymeersch H, Larsson E G, et al. Direct localization for massive MIMO[J]. IEEE Trans Signal Process, 2017, 65(10):2475-2487. [36] Guerra A, Guidi F, Dardari D. Single-anchor localization and orientation performance limits using massive arrays:MIMO vs. Beamforming[J]. IEEE Trans Wireless Commun, 2017(99):1-1. [37] Wan L, Han G, Shu L, et al. The critical patients localization algorithm using sparse representation for mixed signals in emergency healthcare system[J]. IEEE Systems J, 2018(99):1-12. [38] Palacios J, Casari P, Widmer J, et al. JADE:Zero-knowledge device localization and environment mapping for millimeter wave systems[C]//IEEE INFOCOM. Atlanta, USA:IEEE, 2017:1-9. [39] Tao C, Zhou B. Indoor localization with smart antenna system:multipath mitigation with MIMO beamforming scheme[C]//IEEE MASS. Orlando, FL, USA:IEEE, 2017:303-307. [40] Guerra A, Guidi F, Dardari D, et al. On the impact of beamforming strategy on mm-wave localization performance limits[C]//IEEE ICC Workshops. Paris, France:IEEE, 2017:809-814. [41] Koirala R, Denis B, Dardard D, et al. Localization bound based beamforming optimization for multicarrier mmWave MIMO[C]//IEEE WPNC. Bremen, Germany:IEEE, 2017:1-6. [42] Wang D, Fattouche M, Ghannouchi F M, et al. Bounds of mmWave-based ranging and positioning in multipath channels[C]//IEEE Globecom Workshops. Singapore:IEEE, 2017:1-6 [43] Amar A, Weiss A J. Localization of narrowband radio emitters based on doppler frequency shifts[J]. IEEE Trans Signal Process, 2008, 56(11):5500-5508. [44] Li Z, Wang D, Yu H. A ML method for TDOA and FDOA localization in the presence of receiver and calibration source location errors[C]//IET ICT. Nanjing:IET, 2014:1-5. [45] Zou Y, Liu H, Wan Q. An iterative method for moving target localization using TDOA and FDOA measurements[J]. IEEE Access, 2017(99):10-20. [46] Liu R, Yin J. Semidefinite programming for NLOS localization using TDOA and FDOA measurements[C]//2017 3rd IEEE International Conference on Computer and Communications. Chengdu:IEEE, 2017:892-895. [47] Wang Y, Wu Y, Shen Y, et al. An efficient TDOA and FDOA based source localization algorithm via importance sampling[C]//IEEE ICCC. Qingdao:IEEE, 2017:1-6. [48] Noroozi A, Oveis A H, Hosseini S M, et al. Improved algebraic solution for source localization from TDOA and FDOA measurements[J]. IEEE Wireless Communications Letters, 2018, 7(3):352-355. [49] Qu X, Xie L, Tan W. Iterative constrained weighted least squares source localization using TDOA and FDOA measurements[J]. IEEE Trans Signal Process., 2017, 65(15):3990-4003. [50] Wang Y, Wu Y. An efficient semidefinite relaxation algorithm for moving source localization using TDOA and FDOA measurements[J]. IEEE Commun Letters, 2017, 21(1):80-83. [51] Hmam H. Optimal sensor velocity configuration for TDOA-FDOA geolocation[J]. IEEE Trans Signal Process, 2017, 65(3):628-637. [52] Popescu D C, Hedley M. Range data correction for improved localization[J]. IEEE Wireless Commun Lett, 2015, 4(3):297-300. [53] Wang G, Chen H, Li Y, et al. On received-signal-strength based localization with unknown transmit power and path loss exponent[J]. IEEE Wireless Commun Lett, 2012, 1(5):536-539. [54] Li D, Huang J. RSS based method for sensor localization with unknown transmit power and uncertainty in path loss exponent [J]. Sensors, 2016, 16(9):1452. [55] Coluccia A, Ricciato F. On ML estimation for automatic RSS-based indoor localization [C]//IEEE ISWPC'10. Modena, Italy:IEEE, 2010:495-502. [56] Zhang Y, Xing S, Zhu Y, et al. RSS-based localization in WSNs using gaussian mixture model via semidefinite relaxation [J]. IEEE Commun Lett, 2017, 21(6):1329-1332. [57] Zanella A. Best practice in RSS measurements and ranging [J]. IEEE Commun Surveys Tut, 2016, 18(4):2662-2686. [58] Abrudan T E, Kypris O, Trigoni N, et al. Impact of rocks and minerals on underground magneto-inductive communication and localization[J]. IEEE Access, 2016:3999-4010. [59] Sun S, Rappaport T S, Thomas T A, et al. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications[J]. IEEE Trans Veh Technol, 2016, 65(5):2843-2860. [60] Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands[J]. IEEE Communications Magazine, 2014, 52(9):78-86. [61] Maccartney G R, Rappaport T S, Samimi M K, et al. Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling[J]. IEEE Access, 2015:1573-1580. [62] Ko J, Cho Y, Hur S, et al. Millimeter-wave channel measurements and analysis for statistical spatial channel model in in-building and urban environments at 28 GHz[J]. IEEE Trans Wireless Commun, 2017, 16(9):5853-5868. [63] Rappaport T S, Xing Y, Maccartney G R, et al. Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models[J]. IEEE Trans Antennas and Propaga, 2017, 65(12):6213-6230. [64] Yassine A, Nasser Y, Ieee S M, et al. Hybrid positioning data fusion in heterogeneous networks with critical hearability [J]. Eurasip J Wireless Commun Netw, 2014, 2014(1):215. [65] Gezici S, Tian Z, Giannakis G B, et al. Localization via ultra-wideband radios:a look at positioning aspects for future sensor networks [J]. IEEE Signal Process Mag, 2005, 22(4):70-84. [66] Yin J, Wan Q, Yang S, et al. A simple and accurate TDOA-AOA localization method using two stations [J]. IEEE Signal Process Lett, 2015, 23(1):144-148. [67] Tomic S, Beko M, Dinis R. 3-D target localization in wireless sensor networks using RSS and AoA measurements[J]. IEEE Trans Veh Technol, 2017, 66(4):3197-3210. [68] Tomic S, Beko M, Dinis R. Distributed RSS-AoA based localization with unknown transmit powers[J]. IEEE Wireless Commun Lett, 2016, 5(4):392-395. [69] Taponecco L, D'Amico A A, Mengali U. Joint TOA and AOA estimation for UWB localization applications[J]. IEEE Trans Wireless Commun, 2011, 10(7):2207-2217. [70] Shikur B Y, Weber T. Localization in NLOS environments using TOA, AOD, and Doppler-shift[C]//IEEE WPNC. Dresden, Germany:IEEE, 2014:1-6. [71] Luo J A, Zhang X P, Wang Z. A new passive source localization method using AOA-GROA-TDOA in wireless sensor array networks and its Cramér-Rao bound analysis[C]//IEEE ICASSP. Vancouver, BC, Canada:IEEE, 2013:4031-4035. [72] Lin Z, Lv T, Mathiopoulos P T, et al. 3-D indoor positioning for millimeter-wave massive MIMO systems[J]. IEEE Trans Commun, 2018, 66(6):2472-2486. [73] Guidi F, Guerra A, Dardari D. Personal mobile radars with millimeter-wave massive arrays for indoor mapping[J]. IEEE Trans Mobile Compu, 2016, 15(6):1471-1484. [74] Elsawy H, Dai W, Alouini M S, et al. Base station ordering for emergency call localization in ultra-dense cellular networks[J]. IEEE Access, 2017, 6:301-315. [75] Tsui A W T, Lin W C, Chen W J, et al. Accuracy performance analysis between war driving and war walking in metropolitan Wi-Fi localization [J]. IEEE Trans Mobile Comput, 2010, 9(11):1551-1562. [76] Koo J, Cha H. Unsupervised locating of WiFi access points using smartphones[J]. IEEE Trans on Syst, Man, and Cybern, Syst, 2012, 42(6):1341-1353. [77] Yang S, Dessai P, Verma M, et al. FreeLoc:Calibration-free crowdsourced indoor localization [C]//IEEE INFOCOM'13. Turin, Italy:IEEE, 2013:2481-2489. [78] Haniz A, Tran G K, Iwata R, et al. Propagation channel interpolation for fingerprint-based localization of illegal radios [J]. IEICE Trans Commun, 2015, E98B(12):2508-2519. [79] Chowdappa V, Botella C, Samperzapater J J, et al. Distributed radio map reconstruction for 5G automotive[J]. IEEE Intell Transp Syst Mag, 2018, 10(2):36-49. [80] Haniz A, Tran G K, Saito K, et al. A novel phase-difference fingerprinting technique for localization of unknown emitters[J]. IEEE Trans Veh Technol, 2017, 66(9):8445-8457. [81] Sun S, Rappaport T S, Thomas T A, et al. Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications[J]. IEEE Trans Veh Technol, 2016, 65(5):2843-2860. [82] Arya A, Godlewski P, Campedel M, et al. Radio database compression for accurate energy-efficient localization in fingerprinting systems[J]. IEEE Trans Knowl Data Eng, 2013, 25(6):1368-1379. [83] Nikitaki S, Tsagkatakis G, Tsakalides P, et al. Efficient multi-channel signal strength based localization via matrix completion and bayesian sparse learning[J]. IEEE Trans Mobile Comput, 2015, 14(11):2244-2256. [84] Milioris D, Tzagkarakis G, Papakonstantinou A, et al. Low-dimensional signal-strength fingerprint-based positioning in wireless LANs[J]. Ad Hoc Netw, 2014, 12(1):100-114. [85] Talvitie J, Renfors M, Valkama M, et al. Method and analysis of spectrally compressed radio images for mobile-centric indoor localization[J]. IEEE Trans Mobile Comput., 2018, 17(4):845-858. [86] He S, Chan S H G. Tilejunction:mitigating signal noise for fingerprint-based indoor localization[J]. IEEE Trans Mobile Comput, 2016, 15(6):1554-1568. [87] He S, Chan S H G. Sectjunction:Wi-Fi indoor localization based on junction of signal sectors [C]//IEEE ICC'14. Sydney:IEEE, 2014:2605-2610. [88] Jiang Y, Pan X, Li K, et al. ARIEL:automatic Wi-Fi based room fingerprinting for indoor localization [C]//ACM UbiComp'12. Pittsburgh, Pennsylvania:ACM, 2012:441-450. [89] Zhou R, Lu X, Zhao P, et al. Device-free presence detection and localization with SVM and CSI fingerprinting [J]. IEEE Sensors J, 2017, 17(23):7990-7999. [90] Nuno-Barrau G, Paez-Borrallo J M. A new location estimation system for wireless networks based on linear discriminant functions and hidden markov models [J]. Eurasip J Appl Signal Process, 2006:159. [91] Liu C, Tian Z, Zhou M, et al. Gene-sequencing-based indoor localization in distributed antenna system[J]. IEEE Sensors J, 2017, 17(18):6019-6028. [92] Youssef M, Agrawala A. The Horus WLAN location determination system [J]. ACM Wireless Netw J, 2007(14):357-374. [93] Mirowski P W, Whiting P A, Steck H, et al. Probability kernel regression for WiFi localization [J]. J Location Based Serv, 2012, 6(2):81-100. [94] Atia M M, Noureldin A, Korenberg M J. Dynamic online-calibrated radio maps for indoor positioning in wireless local area networks [J]. IEEE Trans Mobile Comput, 2013, 12(9):1774-1787. [95] Alsindi N, Chaloupka Z, Alkhanbashi N, et al. An empirical evaluation of a probabilistic RF signature for WLAN location fingerprinting [J]. IEEE Trans Wireless Commun, 2014, 13(6):3257-3268. [96] Xiao Z, Wen H, Markham A, et al. Lightweight map matching for indoor localisation using conditional random fields [C]//IEEE IPSN'14. Berlin, Germany:IEEE, 2014:131-142. [97] Koivisto M, Costa M, Werner J, et al. Joint device positioning and clock synchronization in 5G ultra-dense networks[J]. IEEE Trans Wireless Commun, 2017, 16(5):2866-2881. [98] Koivisto M, Hakkarainen A, Costa M, et al. Continuous high-accuracy radio positioning of cars in ultra-dense 5G networks[C]//IEEE IWCMC. Valencia, Spain:IEEE, 2017:115-120. [99] Behnad A, Wang X, Willink T J, et al. Connectivity-based centroid localization using distributed dense reference nodes[J]. IEEE Trans Veh Technol, 2018, 67(7):6685-6689. [100] Kassas Z Z M, Khalife J, Shamaei K, et al. I hear, therefore I know where I am:compensating for GNSS limitations with cellular signals[J]. IEEE Signal Process Mag, 2017, 34(5):111-124. [101] Yin L, Ni Q, Deng Z, et al. A GNSS/5G integrated positioning methodology in D2D communication networks[J]. IEEE J Sel Areas Commun, 2018, 36(2):351-362. [102] 赵亚东, 尉志青, 冯志勇, 等. 卫星导航与5G移动通信融合架构与关键技术[J]. 电信工程技术与标准化, 2017, 30(1):48-53. Zhao Y D, Wei Z Q, Feng Z Y, et al. Fusion architecture and key technologies of satellite navigation and 5G mobile communication[J]. Telecom Engineering Technics and Standardization, 2017, 30(1):48-53. [103] 陈诗军, 王慧强, 陈大伟. 面向5G的高精度融合定位及关键技术研究[J]. 中兴通讯技术, 2018(99):1-9. Chen S J, Wang H J, Chen D W. 5G oriented high-precision fusion positioning architecture and key technologies[J]. ZTE Technology Journal, 2018(99):1-9. [104] Taranto R D, Muppirisetty S, Raulefs R, et al. Location-aware communications for 5G networks[J]. IEEE Sig Process Mag, 2014, 102(11):102-112. [105] Safavi S, Khan U A, Kar S, et al. Distributed localization:a linear theory[J]. Proc IEEE, 2018, 106(7):1204-1223. [106] Khan M A, Saeed N, Ahmad A W, et al. Location awareness in 5G networks using RSS measurements for public safety applications[J]. IEEE Access, 2017(5):21753-21762. [107] Hyowon K, Won C S, Sunwoo K. Connectivity information-aided belief propagation for cooperative localization[J]. IEEE Wireless Commun Lett, 2018, 7(6):1010-1013. [108] Chen Y S, Deng D J, Teng C C. Range-based localization algorithm for next generation wireless networks using radical centers[J]. IEEE Access, 2016(4):2139-2153. [109] Buehrer R M, Wymeersch H, Vaghefi R M. Collaborative sensor network localization:algorithms and practical issues[J]. Proc IEEE, 2018, 106(6):1089-1114. |
[1] | 朱子珅, 章晨宇, 王鲁晗, 路兆铭, 温向明. 基于异构计算加速的开源5G架构[J]. 北京邮电大学学报, 2022, 45(1): 63-68. |
[2] | 刘宇, 温向明, 王鲁晗, 路兆铭, 杜科良. 基于VPP的高性能UPF原型[J]. 北京邮电大学学报, 2021, 44(6): 89-95. |
[3] | 初星河, 路兆铭, 王鲁晗, 武穆清, 温向明. 多径信号辅助的网联车辆无线协作定位[J]. 北京邮电大学学报, 2021, 44(2): 116-123. |
[4] | 张平, 许晓东, 韩书君, 牛凯, 许文俊, 兰岳恒. 智简无线网络赋能行业应用[J]. 北京邮电大学学报, 2020, 43(6): 1-9. |
[5] | 马英杰, 赵耿, 范晓红, 张昕然, 高原. 面向5G F-OFDM的量子混沌扩展序列算法[J]. 北京邮电大学学报, 2019, 42(2): 90-94. |
[6] | 王莹, 李洪林, 费子轩, 赵竑宇, 王虹. 5G多接入网络TCP研究与展望[J]. 北京邮电大学学报, 2019, 42(1): 1-15. |
[7] | 唐伦, 赵培培, 赵国繁, 陈前斌. 基于QoS保障的服务功能链动态部署算法[J]. 北京邮电大学学报, 2018, 41(6): 90-96. |
[8] | 张睿, 朱敏, 张冀, 冯丹, 白宝明. 面向5G的递增冗余HARQ传输方案研究[J]. 北京邮电大学学报, 2018, 41(5): 92-97. |
[9] | 孙韶辉, 高秋彬, 杜滢, 刘晓峰, 艾明. 第5代移动通信系统的设计与标准化进展[J]. 北京邮电大学学报, 2018, 41(5): 26-43. |
[10] | 高月红, 李岚, 张欣, 杨鸿文. URLLC业务概率时延约束及资源预留的分析与研究[J]. 北京邮电大学学报, 2018, 41(5): 98-102. |
[11] | 马璐, 王鲁晗, 陈炜, 温向明, 王少春. 服务化的5G核心网切片管理系统研究与实现[J]. 北京邮电大学学报, 2018, 41(5): 78-85. |
[12] | 陈昕, 温向明, 王鲁晗, 路兆铭. 5G中多接入边缘计算的联合部署架构设计[J]. 北京邮电大学学报, 2018, 41(5): 86-91,97. |
[13] | 王子凡, 温向明, 陈亚文, 路兆铭, 常东旭. 面向5G无缝连接的云无线接入网系统及实现[J]. 北京邮电大学学报, 2018, 41(5): 143-148,158. |
[14] | 任品毅, 唐晓. 面向5G的物理层安全技术综述[J]. 北京邮电大学学报, 2018, 41(5): 69-77. |
[15] | 刘光毅, 郑毅, 王飞, 刘建军, 王启星. 5G新空口eMBB业务外场试验最新进展[J]. 北京邮电大学学报, 2018, 41(5): 44-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||