北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2012, Vol. 35 ›› Issue (5): 94-97.doi: 10.13190/jbupt.201205.94.zhangsx

• 研究报告 • 上一篇    下一篇

智能小区的商业智能

张素香   

  1. 1. 北京邮电大学 网络技术研究院2. 国网信息通信有限公司
  • 收稿日期:2011-12-23 修回日期:2012-02-15 出版日期:2012-10-28 发布日期:2012-07-06
  • 通讯作者: 张素香 E-mail:zsuxiang@163.com
  • 作者简介:张素香(1973-),女,副教授,博士后,E-mail:zsuxiang@163.com
  • 基金资助:

    国家电网公司科技项目

Business Intelligence in the Smart Community

ZHANG Su-xiang   

  1. 1. Institute of Network Technology, Beijing University of Posts and Telecommunications 2.State Grid Information and Telecommunication Company Limited
  • Received:2011-12-23 Revised:2012-02-15 Online:2012-10-28 Published:2012-07-06
  • Contact: Su-Xiang ZHANG E-mail:zsuxiang@163.com

摘要:

智能电网用电环节中智能小区的建设可以实现电网与用户之间的实时交互响应,提高用户需求侧响应水平,增强用户能效管理,实现电力负荷的削峰填谷.针对智能小区中的用户类型展开研究,基于支持向量机模型,提出了峰时耗电率、负荷率、用户配合度、谷电系数等特征,实验数据来自已建成的智能小区中的用户. 实验结果表明,基于支持向量机的电力用户类型判别方法是有效的.

关键词: 商业智能, 支持向量机, 特征选择

Abstract:

Smart community construction in the smart power consumption link of the smart grid can bring real time interaction between the grid and end-users, improve demand response performance, enhance user energy efficiency management, and realize the load peak shaving. A new approach was proposed to recognize the resident user type in the smart community based on the support vector machine (SVM) classification model, some interesting features were discussed, which included the power consumption rate in the peak load period, load rate, user cooperation degree and so on. Experiment data were collected from the users of the smart community. Experimental results show that SVM is effective for the power resident user type.

Key words: business intelligence, support vector machine, feature selection

中图分类号: