北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2019, Vol. 42 ›› Issue (5): 29-35.doi: 10.13190/j.jbupt.2019-008

• 论文 • 上一篇    下一篇

基于最小二乘支持向量机的时变信道建模

赵雄文, 孙宁姚, 耿绥燕, 张钰, 杜飞   

  1. 华北电力大学 电气与电子工程学院, 北京 102206
  • 收稿日期:2019-01-19 出版日期:2019-10-28 发布日期:2019-11-25
  • 通讯作者: 孙宁姚(1993-),男,硕士生,E-mail:snyncepu@163.com. E-mail:snyncepu@163.com
  • 作者简介:赵雄文(1964-),男,教授,博士生导师.
  • 基金资助:
    国家自然科学基金项目(61771194);北京市自然科学基金-海淀原始创新联合基金项目(17L20052);北京市科委新一代信息通信技术培育项目(Z181100003218007)

Time-Varying Channel Modeling Using Least Square Support Vector Machine

ZHAO Xiong-wen, SUN Ning-yao, GENG Sui-yan, ZHANG Yu, DU Fei   

  1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2019-01-19 Online:2019-10-28 Published:2019-11-25

摘要: 基于2.55 GHz市区微蜂窝多输入多输出信道实测数据,将机器学习中的最小二乘支持向量机(LS-SVM)算法应用于时变信道参数的建模中,建立了基于遗传算法(GA)优化的LS-SVM信道参数预测模型,对信道参数如时延扩展、接收端的水平角度扩展和垂直角度扩展的数据特征进行了学习,并实现了准确预测;同时通过与反向传播神经网络模型以及传统的LS-SVM模型进行比较,验证了算法的有效性.基于GA优化的LS-SVM模型能够在有限数据量下对信道参数的变化有着良好的适应性,可实现非线性时变信道参数的准确预测.

关键词: 时变信道, 最小二乘支持向量机, 遗传算法, 反向传播神经网络算法

Abstract: Based on 2.55 GHz urban microcellular multiple-input multiple-output (MIMO) channel measurement data, the least squares support vector machine (LS-SVM) method was applied on time-varying channel model. Specifically, a genetic algorithm (GA) based LS-SVM (GA+LS-SVM) model was established for channel parameter prediction. Based on GA+LS-SVM model, the time-varying channel parameters, such as delay spread, horizontal angle spread and vertical angle spread of receiver, were investigated and predicted accurately. Moreover, the GA+LS-SVM model was compared with back propagation neural network and traditional LS-SVM algorithms to verify the effectiveness of the algorithm. In summary, with limited amount of data the GA based LS-SVM model can better adapt to non-linear time-varying channel to realize the accurate prediction of nonlinear time-varying channel parameters.

Key words: time-varying channel, least square support vector machine, genetic algorithm, back propagation neural network

中图分类号: