[1] 叶一枝, 黄建民. 声源定位技术在工业领域中研究与应用[J]. 上海电气技术, 2009, 2(2): 55-58. Ye Yizhi, Huang Jianmin. Research and application of sound source localization technology in industrial field[J].Journal of Shanghai Electric Technology, 2009, 2(2): 55-58. [2] Schau H C, Robinson A Z. Passive source localization employing intersection spherical surfaces from time-of-arrival differences[J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1987, 35(8): 1223-1225. [3] Smith J O, Abel J S. Closed-form least-squares source location estimation from range-difference measurements[J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1987, 35(12): 1661-1669. [4] Brandstein M S, Adcock J E, Silverman H F. A closed-form localization estimation for use with room environment microphone arrays[J]. IEEE Trans on Speech and Audio Processing, 1997, 5(1): 45-50. [5] Huang Y, Benesty J, Elko G W, et.al. An efficient linear-correction least-square approach to source localization//WASPAA2001. New Paltz: , 2001: 21-24. [6] 杨祥清, 汪增福. 基于麦克风阵列的三维声源定位算法及其实现[J]. 声学技术, 2008, 27(2): 260-265. Yang Xiangqing, Wang Zengfu. 3D sound source localization algorithm and its implementation based on microphone array[J]. Technical Acoustics, 2008, 27(2): 260-265. [7] 张奕, 殷福亮, 陈喆. 基于线性校正总体最小二乘准则的三维说话人定位算法[J]. 通信学报, 2009, 30(12): 106-122. Zhang Yi, Yin Fuliang, Chen Zhe. Linear correction total least-squares approach to 3D acoustic source localization[J]. Journal on communications, 2009, 30(12): 106-122. [8] Amir B, Aharon B T, Marc T. Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized total least squares[J]. SIAM J Matrix Anal Appl, 2006, 28(2): 425-445. [9] Huffel V S, Vandewalle J. The total least-squares problem: computational aspects and analysis[M]. Philadelphia: SIAM, 1991: 33-37. [10] Golub G H, Van Loan C F. An analysis of the total least-squares problem[J]. SIAM J Numer Anal, 1980, 17(6): 883-893. [11] Beck A, Teboulle M. A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid [J]. Mathematical Programming: Series A and B, 2009, 118(1): 13-35. [12] Ai Wenbao, Zhang Shuzhong. Strong duality for the CDT subproblem: a necessary and sufficient condition[J]. SIAM Journal on Optimization, 2008, 19(4): 1735-1756. |