北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2025, Vol. 48 ›› Issue (2): 35-45.

• 论文 • 上一篇    下一篇

基于差分隐私的轨迹隐私分级数据发布方法

何倩, 廖冰洁, 刘鹏, 董庆贺, 赵宝康   

  1. 1. 桂林电子科技大学 卫星导航定位与位置服务国家地方联合工程研究中心 2. 桂林电子科技大学 广西密码学与信息安全重点实验室 3. 国防科技大学 计算机学院
  • 收稿日期:2024-01-23 修回日期:2024-04-01 出版日期:2025-04-30 发布日期:2025-04-30
  • 通讯作者: 董庆贺 E-mail:58359724@qq.com
  • 基金资助:
    国家自然科学基金项目; 广西自然科学基金项目

Data Publishing Method for Trajectory Privacy Classification based on Differential Privacy

  • Received:2024-01-23 Revised:2024-04-01 Online:2025-04-30 Published:2025-04-30

摘要: 针对传统轨迹数据发布未考虑用户在不同场所的隐私偏好问题,笔者提出一种基于差分隐私的轨迹隐私分级的数据发布方法。为了满足用户对不同敏感度数据的隐私保护需求,设置停留点和热点属性,根据用户隐私偏好赋予不同的隐私级别。基于密度聚类算法将高密度轨迹点划分到同一个簇中,引入标准差对轨迹进行均匀分段,降低处理轨迹数据的时空复杂性。构建噪声轨迹段前缀树,根据轨迹隐私级别的权重和树高来分配隐私预算, 引入马尔可夫链来限制添加到数据中的噪声大小。实验结果表明,所提方法有效地平衡了数据可用性和隐私性。

关键词: 隐私保护, 差分隐私, 数据发布, 位置服务, 隐私分级

Abstract: Aiming at the problem that traditional trajectory data publishing does not consider users' privacy preferences in different places, the paper proposes a data publishing method based on differential privacy for trajectory privacy classification. In order to satisfy users' privacy protection needs for data of different sensitivities, setting dwell and hotspot attributes, different privacy levels are assigned according to users' privacy preferences. The density-based clustering algorithm divides the high-density trajectory points into the same cluster and introduces the standard deviation to segment the trajectories uniformly, reducing the spatiotemporal complexity of processing the trajectory data. Construct a prefix tree of noisy trajectory segments, assign a privacy budget based on the weights of the trajectory privacy levels and the tree height, and introduce a Markov chain to limit the size of the noise added to the data. Experimental results show that the method proposed in this paper effectively balances data availability and privacy.

Key words: privacy protection, differential privacy, data publishing, location services, privacy classification

中图分类号: