[1] Yu Yonghong, Chen Xingguo. A survey of point-of-interest recommendation in location-based social networks[C]//Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin:AAAI, 2015:53-60.
[2] Wang Hongtao, Li Qiang, Yi Feng, et al. Influential spatial facility prediction over large scale cyber-physical vehicles in smart city[J]. EURASIP Journal on Wireless Communications & Networking, 2016, 2016(1):1-12.
[3] He Zongjian, Cao Jiannong, Liu Xuefeng. High quality participant recruitment in vehicle-based crowdsourcing using predictable mobility[C]//INFOCOM 2015. Hong Kong:IEEE, 2015:2542-2550.
[4] Bellovin Steven M, Hutchins Renee M, Jebara Tony, et al. When enough is enough:location tracking, mosaic theory, and machine learning[J]. NYUJL & Liberty, 2013(8):556.
[5] Gedik Bugra, Liu Ling. Protecting location privacy with personalized k-anonymity:architecture and algorithms[J]. IEEE Transactions on Mobile Computing, 2008, 7(1):1-18.
[6] Chow Chi-Yin, Mokbel Mohamed F, Aref Walid G. Casper*:query processing for location services without compromising privacy[J]. ACM Transactions on Database Systems, 2009, 34(4):1-48.
[7] Beresford Alastair R, Stajano Frank. Location privacy in pervasive computing[J]. IEEE Pervasive Computing, 2003, 2(1):46-55.
[8] Palanisamy Balaji, Liu Ling. Attack-resilient mix-zones over road networks:architecture and algorithms[J]. IEEE Transactions on Mobile Computing, 2015, 14(3):495-508.
[9] Niu Ben, Li Qinghua, Zhu Xiaoyan, et al. Achieving k-anonymity in privacy-aware location-based services[C]//INFOCOM 2014. Toronto:IEEE, 2014:754-762.
[10] 刘海, 李兴华, 王二蒙, 等. 连续服务请求下基于假位置的用户隐私增强方法[J]. 通信学报, 2016, 37(7):140-150. Liu Hai, Li Xinghua, Wang Ermeng, et al. Privacy enhancing method for dummy-based privacy protection with continuous location-based service queries[J]. Journal on Communications, 2016, 37(7):140-150.
[11] Wang Yong, Peng Jing, He Long-ping, et al. LBSs privacy preserving for continuous query based on semi-honest third parties[C]//International Performance Computing and Communications Conference. Austin:IEEE, 2012:384-391.
[12] G tz Michaela, Nath Suman, Gehrke Johannes. MaskIt:privately releasing user context streams for personalized mobile applications[C]//ACM SIGMOD International Conference on Management of Data. Scottsdale:ACM, 2012:289-300.
[13] Feng Zhenni, Zhu Yanmin. A survey on trajectory data mining:techniques and applications[J]. IEEE Access, 2016, 4(10):2056-2067.
[14] Kido Hidetoshi, Yanagisawa Yutaka, Satot Tetsuji. An anonymous communication technique using dummies for location-based services[C]//International Conference on Pervasive Services. Santorini:IEEE, 2005:88-97.
[15] Lei Po-Ruey, Peng Wen-Chih, Su Ing-Jiunn, et al. Dummy-based schemes for protecting movement trajectories[J]. Journal of Information Science & Engineering, 2012, 28(2):335-350.
[16] 李凤华, 张翠, 牛犇, 等. 高效的轨迹隐私保护方案[J]. 通信学报, 2015, 36(12):114-123. Li Fenghua, Zhang Cui, Niu Ben, et al. Efficient scheme for user's trajectory privacy[J]. Journal on Communications, 2015, 36(12):114-123.
[17] Niu Ben, Gao Sheng, Li Fenghua, et al. Protection of location privacy in continuous LBSs against adversaries with background information[C]//International Conference on Computing, Networking and Communications. Kauai:IEEE, 2016:1-6.
[18] Xu Fengli, Tu Zhen, Li Yong, et al. Trajectory recovery from ash:user privacy is not preserved in aggregated mobility data[Z]. 2017, arXiv:1702. 06270[cs. CY].
[19] Noulas Anastasios, Scellato Salvatore, Lathia Neal, et al. Mining user mobility features for next place prediction in location-based services[C]//IEEE International Conference on Data Mining. Brussels:IEEE, 2012:1038-1043.
[20] Bindschaedler Vincent, Shokri Reza. Synthesizing plausible privacy-preserving location traces[C]//IEEE Symposium on Security and Privacy. San Jose:IEEE, 2016:546-563.
[21] Wang Yingzi, Yuan Nicholas Jing, Lian Defu, et al. Regularity and conformity:location prediction using heterogeneous mobility data[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris:ACM, 2015:1275-1284.
[22] Rodriguez-Carrion Alicia, Rebollo-Monedero David, Forné Jordi, et al. Entropy-based privacy against profiling of user mobility[J]. Entropy, 2015, 17(6):3913-3946.
[23] Alfalayleh Mousa, Brankovic Ljiljana. Quantifying privacy:a novel entropy-based measure of disclosure risk[C]//Combinatorial Algorithms.[S.l.]:Cham, Springer, 2014:24-36.
[24] Haynes Kingsley E, Fotheringham A Stewart. Gravity and spatial interaction models[C]//Scientific Geography Series. Beverly Hills:Sage Publications, 1984:9-13.
[25] Chew Yong Huat, Nanba Shinobu, Peng Keong, et al. On the verification of the gravity model used for mobility modeling[C]//IEEE International Conference on Communications. Glasgow:IEEE, 2007:5642-5647.
[26] Zhang JiaDong, Chow Chi-Yin. Spatiotemporal sequential influence modeling for location recommendations:a gravity-based approach[J]. Transactions on Intelligent Systems & Technology, 2015, 7(1):1-25
[27] Zheng Yu, Li Quannan, Chen Yukun, et al. Understanding mobility based on GPS data[C]//International Conference on Ubiquitous Computing. Seoul:IEEE, 2008:312-321.
[28] 谢香君. 重力模型标定方法及比较分析[J]. 交通标准化, 2008(8):17-20. Xie Xiangjun. Calibration method and comparison of gravity model[J]. Communication Standardization, 2008(8):17-20. |