北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (5): 59-65.

• 论文 • 上一篇    下一篇

基于深度学习的低光照目标检测算法

王满利,张航,张长森   

  1. 河南理工大学
  • 收稿日期:2023-08-01 修回日期:2023-09-18 出版日期:2024-10-28 发布日期:2024-11-10
  • 通讯作者: 张航 E-mail:zh15225981618@163.com
  • 基金资助:
    国家自然科学基金;河南省科技攻关;山西省重点研发计划

Deep learning based algorithm for low light target detection

  • Received:2023-08-01 Revised:2023-09-18 Online:2024-10-28 Published:2024-11-10
  • Contact: HANG ZHANG E-mail:zh15225981618@163.com
  • Supported by:
    The National Natural Science Foundation of China;Henan Province Science and Technology Research;Key R & D Program of Shanxi Province

摘要: 在复杂的低照度环境中获取的图像容易存在对比低、细节信息丢失等问题,采用现有的目标检测方法效果不理想。该文针对低光照环境检测的特殊性,对YOLOv8算法进行改进,以提高低光照环境下检测的可靠性。首先,该网络主干特征提取部分采用C3_ResBlock,提升低光照检测时的多尺度与弱特征提取能力;随后,引入空洞空间金字塔结构SE_ASPP,利用不同的扩张率提取复杂场景的信息,维持计算量的同时提升训练效果;最后,自适应融合SKNet与GAM注意力机制,SKNet包含自适应感应野机制,能够选择更重要与有效的空间进行多尺度特征提取融合,GAM可以调整各通道的重要程度,提高网络模型的特征提取与表征能力。数值实验表明,相较于YOLOv8,该文所提YOLO-RSG算法在ExDark 数据集中mAP提升了3.60%,可以有效地提高低照度场景下目标检测性能,并具有良好的稳定性与适用性,能够较好地满足低光照场景下目标检测的需求。

关键词: 目标检测, 低光照场景, 多尺度特征, 注意力机制

Abstract: The images acquired in complex low-light environments are prone to problems such as low contrast and loss of detail information, and the results of using existing target detection methods are not satisfactory. In this paper, the YOLOv8 algorithm is improved for the special characteristics of low-light environment detection to improve the reliability of detection in low-light environment. Firstly, the backbone feature extraction part of this network adopts C3_ResBlock to improve the multi-scale and weak feature extraction ability in low-light detection; subsequently, the hollow space pyramid structure SE_ASPP is introduced to extract the information of the complex scene by using different expansion rates to maintain the computational volume while improving the training effect; finally, the adaptive fusion of SKNet and GAM attention mechanism. SKNet contains adaptive induction field mechanism, which can select more important and effective space for multi-scale feature extraction and fusion, and GAM can adjust the importance degree of each channel to improve the feature extraction and characterization ability of the network model. Numerical experiments show that compared with YOLOv8, the proposed YOLO-RSG algorithm in this paper improves the mAP by 3.60% in the ExDark dataset, which can effectively improve the performance of target detection in low illumination scenes and has good stability and applicability, and can better meet the needs of target detection in low-light scenes.

Key words: Object detection, Low-light scenes, Multi-scale features, Attention mechanism

中图分类号: