北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2024, Vol. 47 ›› Issue (5): 14-21.

• 论文 • 上一篇    下一篇

数字语义通信中基于语义重要性的量化比特分配方法

朱翔本1,郭彩丽2,杨洋2,刘传宏1,莫振扬1   

  1. 1. 北京邮电大学
    2. 北京邮电大学信息与通信工程学院
  • 收稿日期:2023-08-13 修回日期:2023-12-03 出版日期:2024-10-28 发布日期:2024-11-10
  • 通讯作者: 郭彩丽 E-mail:guocaili@bupt.edu.cn
  • 基金资助:
    北京市自然科学基金

A Quantization Bit Allocation Method Based on Semantic Importance in Digital Semantic Communication

  • Received:2023-08-13 Revised:2023-12-03 Online:2024-10-28 Published:2024-11-10
  • Contact: Cai Li GUO E-mail:guocaili@bupt.edu.cn

摘要: 数字语义通信在保留语义通信优势的同时能够与现有通信系统兼容,而量化是实现数字语义通信的关键。数字语义通信中的量化,需要多个量化器对多个维度的语义特征进行量化,由于硬件受限,量化总比特数有限,所以需要一种对量化器的比特分配方案。针对这一问题,提出一种基于语义重要性的比特分配算法。首先,构建了基于语义重要性的量化比特分配问题,在最大比特数的限制下,考虑不同语义信息的重要性,最小化量化和传输带来的失真;然后,引入强化学习技术,以比特分配范围为动作空间,以语义特征为状态空间,提出了基于强化学习的量化比特分配算法;最后,对所提算法进行训练,得到最优比特分配策略。仿真结果表明,所提算法收敛速度较快,在图像分类的任务场景下,所提算法的交叉熵比基准算法下降最多48.16%,分类准确度提高最多12.65%。

关键词: 数字语义通信, 语义重要性, 量化比特分配, 强化学习

Abstract: Digital semantic communication can be compatible with existing communication systems while retaining the advantages of semantic communication, and quantization is the key to realize digital semantic communication. Quantization in digital semantic communication requires multiple quantizers to quantify multi-dimensional semantic features. Due to the limited hardware and the limited number of quantization bits, a bit allocation scheme for quantizers is necessary. To solve this problem, a bit allocation algorithm based on semantic importance is proposed. Firstly, a quantized bit allocation problem based on semantic importance is constructed. Under the limit of the maximum number of bits, the importance of different semantic information is considered to minimize the distortion caused by quantization and transmission. Then, a quantization bit allocation algorithm based on reinforcement learning is proposed with the bit allocation range as the action space and the semantic feature as the state space. Finally, the proposed algorithm is trained and the optimal bit allocation strategy is obtained. The simulation results show that the proposed algorithm converges quickly. In the task scenario of image classification, the cross entropy of the proposed algorithm decreases by 48.16% compared with the benchmark algorithm, and the classification accuracy increases by 12.65%.

Key words: digital semantic communication, semantic importance, quantization bit allocation, reinforcement learning

中图分类号: